The authors have previously shown that acute lung injury (ALI) produces a wide spectrum of pathological processes in patients who die of severe acute respiratory syndrome (SARS) and that the SARS coronavirus (SARS-CoV) nucleoprotein is detectable in the lungs, and other organs and tissues, in these patients. In the present study, immunohistochemistry (IHC) and in situ hybridization (ISH) assays were used to analyse the expression of angiotensin-converting enzyme 2 (ACE2), SARS-CoV spike (S) protein, and some pro-inflammatory cytokines (PICs) including MCP-1, TGF-beta1, TNF-alpha, IL-1beta, and IL-6 in autopsy tissues from four patients who died of SARS. SARS-CoV S protein and its RNA were only detected in ACE2+ cells in the lungs and other organs, indicating that ACE2-expressing cells are the primary targets for SARS-CoV infection in vivo in humans. High levels of PICs were expressed in the SARS-CoV-infected ACE2+ cells, but not in the uninfected cells. These results suggest that cells infected by SARS-CoV produce elevated levels of PICs which may cause immuno-mediated damage to the lungs and other organs, resulting in ALI and, subsequently, multi-organ dysfunction. Therefore application of PIC antagonists may reduce the severity and mortality of SARS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.