Light‐harvesting chlorophyll a/b binding (Lhc) family proteins play a significant role in photosynthetic processes. Our objective was systematic identification and analysis of the Lhc family in cotton, as well as the relationship between Lhc family genes and chlorophyll synthesis during photosynthetic processes.
We used genome‐wide identification, phylogenetic analysis, chromosomal distribution and collinearity to examine potential functions of Lhc superfamily genes in upland cotton. Subcellular localization, qRT‐PCR, a yeast two hybrid (Y2H) , and Virus‐induced gene silencing (VIGS) experiment were used to explore function of GhLhcb2.3.
Focusing on GhLhc family, gene structural analysis of G. hirsutum Lhc family genes (GhLhc) indicated the conservation of selected Lhc family members. The expression pattern of GhLhc proteins shows that Lhc family proteins are important for photosynthetic processes in leaves. Results of subcellular localization and qRT‐PCR in different cotton varieties showed that GhLhcb2.3 is closely related to chloroplast chlorophyll. Y2H found extensive heteromeric interactions between the GhLhcb2.3 and GhLhcb1.4. Subcellular localization revealed that GhLhcb1.4 is located in chloroplasts. VIGS showed that GhLhcb2.3 influenced chlorophyll a synthesis.
We comprehensively identified Lhc family genes in cotton, characterized these genes and reveal the influence of GhLhcb2.3 on chlorophyll a synthesis.
Mycobacterium tuberculosis virulence factors, EsxA and EsxB, are secreted as a heterodimer (EsxA:B) and play an essential role in mycobacterial phagosomal escape and cytosolic translocation. Current studies support a model that EsxA must dissociate from its chaperon EsxB at low pH in order for EsxA to interact with host membranes. However, the mechanism of the heterodimer separation is not clear. In the present study, we have obtained evidence that the N αacetylation of Thr2 on EsxA, a post-translational modification that is present in mycobacteria, but absent in E. coli, is required for the heterodimer separation. The point mutations at Thr2 without N α -acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the membranes, which resulted in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamic simulation showed that at low pH the N αacetylated Thr2 made direct and frequent "bindand-release" contacts with EsxB, which generates a dragging force to pull EsxB away from EsxA.
Conflicts of Interest:The authors declare there is no conflicts of interest in the content of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.