Sphere-like Bi 5 O 7 I (BOI) doped with La (L-BOI) samples were prepared by a solvothermal method followed by calcination at 450 °C for 2 h. Au nanoparticles were loaded on 6% La-doped Bi 5 O 7 I (2%A− 6%L-BOI) microspheres by a room-temperature chemical reduction method. The UV−vis absorption spectra show that the L-BOI and 2%A− 6%L-BOI samples have a strong visible-light absorption in comparison with the pure BOI. The electron paramagnetic resonance results indicate that the number of oxygen vacancies in L-BOI samples is increased with an increasing amount of the La dopant. The band structure of the prepared photocatalysts is investigated by confirming the positions of the valence band (VB) measured by XPS-VB and the Fermi level computed by density functional theory, respectively. NO is selected as a target gaseous pollutant to confirm the influence of La doping and the plasmonic effect of Au nanoparticles on the photocatalytic activity of BOI microspheres. The 2%A−6%L-BOI sample exhibits an enhanced photocatalytic performance compared to BOI, L-BOI, and A-BOI photocatalysts under visible-light irradiation. Interestingly, the 2%A−6%L-BOI sample also can reduce the amount of intermediate NO 2 during the NO removal process. The enhanced photocatalytic efficiency of the 2%A−6%L-BOI photocatalyst is profited from the synergy of La-ion doping, oxygen vacancy, and the surface plasmon resonance effect of Au nanoparticles. Based on the results of trapping experiments and electron spin resonance spectroscopy tests, h + , e − , and • O 2 − were involved in the NO oxidative removal.
Na2Fe2Ti6O16 demonstrates a strong adsorptive ability towards methylene blue and easy separation from aqueous solution due to its high saturation magnetization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.