Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first-year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound-guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five-point scale. Cognitive load on using ultrasound was measured on a nine-point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on "image interpretation" was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = -0.22; P = 0.61]. Weighted factor score on "basic knobology" was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P < 0.001). Using ultrasound to teach anatomy does not negatively impact learning and may improve learning outcomes. Anat Sci Educ 10: 144-151. © 2016 American Association of Anatomists.
These results show that transient administration of anti-LFA-1 mAb or anti-CD154 mAb is efficacious in prolonging NPI xenograft survival when islets are cotransplanted with SC. Interleukin-4 and Serpina3n may be important mediators of protection observed in this model.
We previously demonstrated that short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) induces tolerance to neonatal porcine islet (NPI) xenografts that is mediated by regulatory T cells (Tregs) in B6 mice. In this study, we examined whether the coinhibitory molecule PD-1 is required for the induction and maintenance of tolerance to NPI xenografts. We also determined whether tolerance to NPI xenografts could be extended to allogeneic mouse or xenogeneic rat islet grafts since we previously demonstrated that tolerance to NPI xenografts could be extended to second-party NPI xenografts. Finally, we determined whether tolerance to NPI xenografts could be extended to allogeneic mouse or second-party porcine skin grafts. Diabetic B6 mice were transplanted with 2,000 NPIs under the kidney capsule and treated with short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs. Some of these mice were also treated simultaneously with anti-PD-1 mAb at >150 days posttransplantation. Spleen cells from some of the tolerant B6 mice were used for proliferation assays or were injected into B6 rag −/− mice with established islet grafts from allogeneic or xenogeneic donors. All B6 mice treated with anti-LFA-1 and anti-CD154 mAbs achieved and maintained normoglycemia until the end of the study; however, some mice that were treated with anti-PD-1 mAb became diabetic. All B6 rag −/− mouse recipients of first-and second-party NPIs maintained normoglycemia after reconstitution with spleen cells from tolerant B6 mice, while all B6 rag −/− mouse recipients of allogeneic mouse or xenogeneic rat islets rejected their grafts after cell reconstitution. Tolerant B6 mice rejected their allogeneic mouse or xenogeneic second-party porcine skin grafts while remaining normoglycemic until the end of the study. These results show that porcine islet-specific tolerance is dependent on PD-1, which could not be extended to skin grafts.
The yield, cell composition, and function of islets isolated from various ages of neonatal pigs were characterized using in vitro and in vivo experimental models. Islets from 7- and 10-day-old pigs showed significantly better function both in vitro and in vivo compared to islets from 3- and 5-day-old pigs however, the islet yield from 10-day-old pigs were significantly less than those obtained from the other pigs. Since islets from 3-day-old pigs were used in our previous studies and islets from 7-day-old pigs reversed diabetes more efficiently than islets from other groups, we further evaluated the function of these islets post-transplantation. B6 rag-/- mouse recipients of various numbers of islets from 7-day-old pigs achieved normoglycemia faster and showed significantly improved response to glucose challenge compared to the recipients of the same numbers of islets from 3-day-old pigs. These results are in line with the findings that islets from 7-day-old pigs showed reduced voltage-dependent K+ (Kv) channel activity and their ability to recover from post-hypoxia/reoxygenation stress. Despite more resident immune cells and immunogenic characteristics detected in islets from 7-day-old pigs compared to islets from 3-day-old pigs, the combination of anti-LFA-1 and anti-CD154 monoclonal antibodies are equally effective at preventing the rejection of islets from both age groups of pigs. Collectively, these results suggest that islets from various ages of neonatal pigs vary in yield, cellular composition, and function. Such parameters may be considered when defining the optimal pancreas donor for islet xenotransplantation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.