Level control of liquid in a tank or any similar container is widely used in applications such as chemical and oil industrial processes. Control the level at desired value is very important. This paper studies the performance of P, PI, and PID controllers in controlling the level of a liquid. Mass balance is used to find mathematical model of water tank level. Ziegler-Nichol (Z-N) and Cohen-Coon (C-C) tuning methods are used to evaluate parameters of the controllers. The error indices such as Integral Absolute Error (IAE) and Integral Squared Error (ISE) are used to compare between performances of the controllers. MATLAB is used to test the control system performance and compare the results with real values. Both simulation and experimental results show that liquid level system can be controlled effectively by using Z-N tuning method. The result shows that the PI controller gives better performance in comparison with P and PID controller.
In this study, the incipient wetness impregnation (IWI) method was used to prepare tin oxide nanoparticles supported on reduced graphene oxide nanosheets (SnO2/rGO). Characterize of catalyst composite were analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. The activity of the SnO2/rGO catalyst was evaluated in the catalytic oxidation process of dibenzothiophene (DBT) for modeled oil and diesel fuel in the presence of H2O2 as an oxidant. Optimum reaction conditions (the loading quantity of the tin oxide, the concentration of dibenzothiophene, the time of reaction, the temperature, the amount of oxidant, and the catalyst dosage) were investigated in a batch reactor. High-value of dibenzothiophene (DBT) removal from modeled oil samples was 79% at temperature = 60 ◦C, reaction time = 90 min, catalyst dosage = 0.04 g, amount of H2O2 = 0.375 mL, and 385 ppm concentration of dibenzothiophene. Catalyst activity at the same operating condition was also investigated for diesel fuel and the removal of sulfur was 41%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.