Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry.
Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems.
The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30) years, and all their parameters were within the internationally accepted standards.
Long Extra High Voltage (EHV) transmission systems tend to bring a pronounced state of secondary arcing. Therefore, an essential pre-requisite for single-phase-switching application, is the possibility and speed of secondary arc final extinction during suitably short dead-time. During the past several decades, many techniques had been proposed and implemented in order to ensure fast secondary arc extinction. Among these was the use of High Speed Grounding Switches (HSGS’s). In such technique, the faulted phase is grounded via special switches; one at each end of the EHV line after the fault is cleared by both line ends circuit breakers. The primary advantage of grounding the faulted phase is the reduction of the fault point recovery voltage to a very low value. This, coupled with the circulation of opposite loop currents in the fault path, reduces the secondary arc current and lead to a fast secondary arc extinction. A sample 500kV, 300km transmission system equipped with High Speed Grounding Switches is modeled as a test system. The modified Fourier transform is used to calculate the system response through, fault, fault clearance, HSGS’s operation, and line restoration. The non-linearity of the secondary arcing state is also accounted for. The paper concludes with a presentation of some computational results related to the above mentioned EHV system showing that HSGS’s greatly improves the single-phase-switching performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.