The structural arrangement of type I collagen in vivo is critical for the normal functioning of tissues, such as bone, cornea, tendons, and blood vessels. At present, there are no established low-cost techniques for fabricating aligned collagen structures for applications in regenerative medicine. Here, we report on a straightforward approach to fabricate collagen films, with defined orientation distributions of collagen fibrillar aggregates within a matrix of oriented collagen molecules on flat sample surfaces. Langmuir-Blodgett (LB) technology was used to deposit thin films of oriented type I collagen onto flat substrates exhibiting various shapes. By varying the shapes of the substrates (e.g., rectangles, squares, circles, parallelograms, and various shaped triangles) as well as their sizes, a systematic study on collagen alignment patterns was conducted. It was found that the orientation and the orientation distribution of collagen along these various shaped substrates are directly depending on the geometry of the substrate and the dipping direction of that sample with respect to the collagen/water subphase. An important factor in tissue engineering is the stability, durability, and endurance of the constructed artificial tissue and thus its functioning in regenerative medicine applications. By testing these criteria, we found that the coated films and their alignments were stable for at least three months under different conditions and, moreover, that these films can withstand temperatures of up to 60 °C for a short time. Therefore, these constructs may have widespread applicability in the engineering of collagen-rich tissues.
Waveguide Evanescent Field Scattering (WEFS) microscopy is introduced as a new and simple tool for label-free, high contrast imaging of bacteria and bacteria sensors. Bacterial microcolonies and single bacteria were discriminated both by their bright field images and by their evanescent scattering intensity. By comparing bright field images with WEFS images, the proportion of planktonic: sessile (i.e., "floating": attached) bacteria were measured. Bacteria were irradiated with UV light, which limited their biofilm forming capability. A quantitative decrease in attachment of individual, sessile bacteria and in attached, microcolony occupied areas was easily determined within the apparent biofilms with increasing UV dose. WEFS microscopy is an ideal tool for providing rapid quantitative data on biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.