BackgroundTelemedicine is the provision of healthcare services through information and communication technology with the potential to mobilize all facets of the health sector to prevent the spread of COVID-19, provide quality healthcare, protect patients, doctors, and the public from exposure to disease, and reduce the burden on the healthcare system. This study aims to identify knowledge, perceptions, willingness to use, and the impact of the COVID-19 pandemic on telemedicine awareness.MethodsA cross-sectional study was conducted from 27 May 2020 to 17 June 2020 using the convenient sampling technique in the general population of Pakistan. Data were collected by designing an online questionnaire consisting of demographic information, knowledge, attitude perceptions, barriers, utilization, and the impact of the COVID-19 pandemic on telemedicine.ResultsOf the 602 participants included in the study, 70.1% had heard about telemedicine, 54.3% had a good understanding of the definition of “telemedicine,” 81.4% had not used telemedicine in the past, 29.9% did not know that telemedicine was available before the COVID-19 pandemic, and 70.4% responded that the COVID-19 pandemic had changed their attitudes toward telemedicine. Gender (p = 0.017) and family income (p = 0.027) had a significant association with the perception of the benefits of telemedicine.ConclusionThe knowledge and usage of telemedicine are lacking due to inadequate awareness and technology. The need of the hour is to maximize the application of telemedicine to overcome the deficiencies of the healthcare system. Hence, it is essential to increase awareness through various means and develop an appropriate infrastructure to attain maximum benefits from telehealth services.
<p>Variation in molybdenum (Mo) concentration and isotope composition is an established tracer for redox changes in marine environments. Here we apply Mo as a proxy of past water column oxygenation in ancient ferruginous and hyposulfidic Lake Towuti. Lake Towuti is >1.2 Myrs old, up to 200m deep, weakly stratified and anoxic below ~100 m water depth, and surrounded by an ultramafic bedrock-dominated catchment in South Sulawesi, Indonesia. Despite the current permanent stratification, deeper water mixing and oxygenation occurred periodically in the past due to Towuti&#8217;s sensitivity to climate change. To better reconstruct the redox changes through time, we present Mo concentration and isotope data from laterite profiles overlying ultramafic bedrock, lake surface sediments, and a ~30 kyr sediment piston core from Lake Towuti, Indonesia.</p><p>Although Mo concentrations in laterite profiles are overall higher compared to the underlying bedrock, the absence of a significant Mo isotopic variability with values close to the unweathered ultramafic protolith, varying from &#8211;0.16&#8240; to &#8211;0.04&#8240; &#948;<sup>98</sup>Mo<sub>NIST3134</sub>, suggests low aqueous mobility of Mo during weathering due to the formation of laterite Fe-oxides. In contrast to the laterite samples, Mo isotopic variability in lake surface sediments show a larger variability varying from &#8211;1.15&#8240; to &#8211;0.13&#8240; &#948;<sup>98</sup>Mo<sub>NIST3134</sub> with a significantly lighter Mo isotopic composition in sediments deposited under oxic bottom water conditions. This light Mo isotopic composition is likely caused by early diagenetic redox cycling of Mo and Fe at the sediment-water interface. In the deeper, anoxic parts of the basin, Mo isotopic compositions show values close to the laterite input with elevated sedimentary Mo concentrations which are likely the result of an authigenic Mo enrichment from the water column. Mo isotope variability in sediments taken from a piston core in the deep part of the lake is in the range of Mo isotope compositions from modern surface sediments, varying from &#8211;0.14&#8240; to &#8211;0.66&#8240; &#948;<sup>98</sup>Mo<sub>NIST3134</sub>. Interestingly, this variability is well correlated with local and global indicators of climate change from previous studies. Sediments deposited between ~30 kyr and ~10 kyr exhibit Mo isotope signatures similar to present-day oxygenated shallow water sites, thereby suggesting enhanced lake mixing and bottom water oxygenation under drier and colder climate conditions of the last glacial period. Sediments deposited since ~10 kyr under wetter and warmer climate conditions exhibit Mo isotope signatures similar to present-day anoxic deeper water settings. These suggest that Mo isotope compositions of lake sediments are potential quantitative indicators of past climate-driven water column oxygenation.</p>
<p>Significant Mo mobility and isotope (&#948;<sup>98/95</sup>Mo) fractionation is induced during prograde metamorphism at present-day subduction zones. Depending on the redox conditions during early subduction and accompanied slab dehydration, isotopically heavy Mo is released towards the overlying mantle wedge, leaving behind a depleted, and isotopically light subducted slab. This isotopically light Mo signature has been detected in slab-melt influenced volcanic rocks and potentially will be traceable in ocean-island basalts, if their geochemical signatures are affected by previously subducted lithologies (i.e. slab and overlying sediments). Thus, the isotope composition of mantle plume-influenced volcanic rocks might reveal the nature of subducted and re-incorporated lithologies and possibly redox conditions during subduction.</p><p>In this study, we present new Mo isotope data for South-Mid Atlantic Ridge basalts that partly interacted with the enriched Discovery and Shona mantle plumes. Isotopically heavier Mo isotope ratios (&#948;<sup>98/95</sup>Mo > ambient depleted mantle) are observed in samples tapping a more enriched mantle source. Furthermore, &#948;<sup>98/95</sup>Mo correlates with radiogenic isotopes (Sr, Nd, Hf) indicating recycling of a Proterozoic sedimentary components with a Mo isotopic composition that was not modified during and before subduction by Mo mobility under oxidising conditions. Rather, the new Mo isotope data supports and expands on previous stable Se and S isotope evidence that suggests the incorporation of subducted anoxic Proterozoic deep-sea sediments into the mantle of the South-Mid Atlantic Ridge basalts.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.