In the recent past, a huge number of cameras have been placed in a variety of public and private areas for the purposes of surveillance, the monitoring of abnormal human actions, and traffic surveillance. The detection and recognition of abnormal activity in a real-world environment is a big challenge, as there can be many types of alarming and abnormal activities, such as theft, violence, and accidents. This research deals with accidents in traffic videos. In the modern world, video traffic surveillance cameras (VTSS) are used for traffic surveillance and monitoring. As the population is increasing drastically, the likelihood of accidents is also increasing. The VTSS is used to detect abnormal events or incidents regarding traffic on different roads and highways, such as traffic jams, traffic congestion, and vehicle accidents. Mostly in accidents, people are helpless and some die due to the unavailability of emergency treatment on long highways and those places that are far from cities. This research proposes a methodology for detecting accidents automatically through surveillance videos. A review of the literature suggests that convolutional neural networks (CNNs), which are a specialized deep learning approach pioneered to work with grid-like data, are effective in image and video analysis. This research uses CNNs to find anomalies (accidents) from videos captured by the VTSS and implement a rolling prediction algorithm to achieve high accuracy. In the training of the CNN model, a vehicle accident image dataset (VAID), composed of images with anomalies, was constructed and used. For testing the proposed methodology, the trained CNN model was checked on multiple videos, and the results were collected and analyzed. The results of this research show the successful detection of traffic accident events with an accuracy of 82% in the traffic surveillance system videos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.