This paper applies the entropy-based fractal indexing scheme that enables the grid environment for fast indexing and querying. It addresses the issue of fault tolerance and load balancing-based fractal management to make computational grids more effective and reliable. A fractal dimension of a cloud of points gives an estimate of the intrinsic dimensionality of the data in that space. The main drawback of this technique is the long computing time. The main contribution of the suggested work is to investigate the effect of fractal transform by adding R-tree index structure-based entropy to existing grid computing models to obtain a balanced infrastructure with minimal fault. In this regard, the presented work is going to extend the commonly scheduling algorithms that are built based on the physical grid structure to a reduced logical network. The objective of this logical network is to reduce the searching in the grid paths according to arrival time rate and path’s bandwidth with respect to load balance and fault tolerance, respectively. Furthermore, an optimization searching technique is utilized to enhance the grid performance by investigating the optimum number of nodes extracted from the logical grid. The experimental results indicated that the proposed model has better execution time, throughput, makespan, latency, load balancing, and success rate.
In a chaotic system, deterministic, nonlinear, irregular, and initial-condition-sensitive features are desired. Due to its chaotic nature, it is difficult to quantify a chaotic system’s parameters. Parameter estimation is a major issue because it depends on the stability analysis of a chaotic system, and communication systems that are based on chaos make it difficult to give accurate estimates or a fast rate of convergence. Several nature-inspired metaheuristic algorithms have been used to estimate chaotic system parameters; however, many are unable to balance exploration and exploitation. The fruit fly optimization algorithm (FOA) is not only efficient in solving difficult optimization problems, but also simpler and easier to construct than other currently available population-based algorithms. In this study, the quantum fruit fly optimization algorithm (QFOA) was suggested to find the optimum values for chaotic parameters that would help algorithms converge faster and avoid the local optimum. The recommended technique used quantum theory probability and uncertainty to overcome the classic FA’s premature convergence and local optimum trapping. QFOA modifies the basic Newtonian-based search technique of FA by including a quantum behavior-based searching mechanism used to pinpoint the position of the fruit fly swarm. The suggested model has been assessed using a well-known Lorenz system with a specified set of parameter values and benchmarked signals. The results showed a considerable improvement in the accuracy of parameter estimates and better estimation power than state-of-the art parameter estimation approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.