Abstract:The incremental sheet forming (ISF) process is an emerging flexible sheet-forming process, which is adequate for the manufacturing of unique or small-volume batches. Single-point incremental forming (SPIF) is the original technology of incremental sheet-forming processes. In this article, frictional stir-assisted SPIF was used to deform AA6061-T6 aluminum alloy. Experimental tests were conducted to measure the forming forces during this process for the concerned lightweight material. The influence of process parameters was investigated, which included tool rotation speed, feed rate, step size and tool diameter on the produced forming forces. A Taguchi technique for the design of experiment (DOE) and the varying wall angle conical frustum (VWACF) test was employed in this study. The results show that the rotation spindle speed was the most dominant parameter that affects the forming forces, followed by the step size, feed rate and tool diameter. In addition, the interaction between the feed rate and step size has a notable impact on the values of the forming forces.
Incremental Sheet Forming (ISF) is characterized by essential flexibility, great formability, and low forming forces and cost compared to the conventional sheet metal forming processes. ISF was born as an advance sheet metal forming process to perfectly fit previous requirements. Nevertheless, growing demand to apply the lightweight materials in several fields was placed this developed process in a critical challenge to manufacture the materials with unsatisfied formability especially at room temperature. Thus, utilizing the heat at warm and hot condition in some ISF processes has been introduced to solve this problem. Among all heat-assisted ISF processes, frictional stirassisted Single Point Incremental Forming (SPIF) was presented to deal with these materials. In this work, this emerging process was utilized to manufacturing products from AA6061-T6 aluminum alloy. Experimental tests were performed to study the influence of main parameters like tool rotation speed, feed rate, step size and tool size on the surface roughness of the produced parts. A Taguchi method and varying wall angle conical frustum (VWACF) test were used in the present work. The results find that tool diameter has a significant impact on the internal surface roughness produced via the forming process with a percentage contribution of 93.86 %. The minimum value of the surface roughness was 0.3 µm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.