Due to various production stages involved, textiles and clothing industry is known for causing carbon dioxide emissions, water pollution, soil erosion and huge waste generation. It is a need of the hour to seek for natural, renewable, and bio-degradable fabrication materials and environmentally friendly production methods. This study proposes an eco-friendly approach to prepare bacterial cellulose/electrospun nanofibers membrane-based hybrid non-woven fabrics using in-situ self-assembly method. This fabrication method enables bacterial cellulose cultivation on nanofibrous membrane support to create custom-made seamless tubular hybrid fabrics in desirable dimensions, to be used for various textile applications with minimized material wastage. As-prepared nano-composite fabric was characterized using SEM, X-ray diffraction, and FTIR. FTIR and X-ray diffraction results confirmed the presence of bacterial cellulose in the composite structure. SEM analysis showed as the bacterial cellulose cultivates, its nanofibrils penetrate and grow into empty voids of membrane's structure, which results in secure binding and interlocking of electrospun nonofibers. Sample thickness and weight gain measurements after the modification were found to be approx. 33.90% and 39.02%, respectively. Reduced surface hydrophobicity, water uptake, and increased tensile strength might contribute towards better fabric performance and comfort. Overall, this study suggests an eco-friendly approach to prepare nano-composite fabrics that might be used for bio-textiles and related applications.
Our research aim is to develop a new composite material via electrospinning and dip coating methodology. Among bioabsorbable polymers, Polylactic acid (PLA) is viewed as a suitable base material for biomedical usages such as drug delivery and wound dressing. Additionally, these bioabsorbable materials can be used for filtration applications in terms of antibacterial activity the integration of hexadecyl trimethyl ammonium chloride-modified montmorillonite (CTAC-MMT) into PLA fibers would improve mechanical and absorption properties of the PLA fibers. This research aimed to investigated a new method of combining electrospun PLA with dip coating of CTAC-MMT solution. Precisely, electrospun PLA nanofibers were treated with methanol and dipped in a CTAC-MMT suspension. The resultant layer composite of PLA nanofibers and CTAC-MMT was then characterized by elemental analysis. For material characterization and morphological structure analysis, we performed FTIR, SEM-EDS, XPS, DSC, and X-ray diffraction. Through mechanical testing and contact angle measurements, it was found that CTAC-MMT shows a slight improvement in mechanical and absorption properties. Results of characterization techniques have shown that CTAC-MMT can be used as a good filler for composites processed through the dip-coating method. Moreover, results also showed that the diameter of microfibers is affected by concentrations of PLA.
To produce an evener fiber assembly, it is important to understand fiber dynamic behavior during the drafting process. Drafting force and its variability is an alternative approach to understand the fiber's velocity-friction characteristics, representing a combined effect of multiple fiber properties. In this study, online drafting force and its variability was measured with different break draft ratios and back roller gauges to analyze its effect on sliver short-term evenness. Drafting force variability well correlated with sliver evenness with correlation coefficient R 2 ¼ 0.81. The coefficient of variation (CV%) of drafting force was highest (2.3%) at low break draft 1.1-1.2, and then reduced gradually to its minimum value (1.5%) around a break draft of 1.6-1.7. The minimum variability of drafting force well corresponds with lower irregularity of sliver at certain break draft ratios. This indicates that a stable drafting force promises better fiber distribution along the sliver length. The variability of drafting force and sliver irregularity also increased as the back gauge increased from 43 to 51 mm. Furthermore, the impact of short fiber content on the drafting force was investigated at three back gauges. The increase in short fiber content gives higher magnitude of drafting force. Drafting force was also compared with the number of neps and change in fiber length in sliver for each break draft. Better nep opening and improved fiber lengths were also found around (1.6-1.7) break draft and follow the same trend of variability of drafting force as the break draft changed.Keywords variability of drafting force, sliver irregularity, break draft ratio, short fiber content During the drafting process, lack of control on the motion of each fiber results in more or less irregular fiber arrangement. The variability in fiber properties, especially in natural fibers, create difficulties in producing more even fiber assemblies. In pursuit of a single parameter, which can represent overall velocity-friction characteristics of fibers, researchers came up with the measurement of drafting force and its variability.Drafting force is the direct and intuitive factor resulting from fiber motion in the drafting zone. Many researchers have investigated the drafting force, describing it as a force required for pulling out the highspeed fibers from the low-speed ones, causing fibers to slide past one another. 1,2 Studies on the effect of various parameters on drafting force, such as fiber crimp, length and fineness, 3,4 and draft setting, such as draft ratio, drafting speed and top roller pressure, 5-7 have been reported.The force required to draft a sliver depends on the frictional properties of its constituent fibers. Moreover, the fiber behavior during the drafting process depends on these frictional forces and, more specifically, on the variation of frictional forces. 8 The drafting force and its variation can be a source of information as they are consequential of intricate fiber cohesion mechanisms. 9 Drafting force variabil...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.