The structural development in bridge engineering along with efficiency have got much attention in few decades. Leading to the development, Optimization of structure established on mathematical analysis emerged mostly employed strategies for productive and sustainable design in the bridge engineering. Despite the widespread knowledge, there has yet to be a rigorous examination of recent structural optimization exploration development. Thus, the primary objectives of this paper are to critically review previous structural optimization research, provide a detailed examination of optimization goals and outline recent research field limitations and provide guidelines for future research proposal in the field of bridge engineering structural optimization. This article begins by outlining the relevance of efficiency and sustainability in the bridge construction, as well as the work done required for this review. Suitable papers are gathered and followed by a statistical analysis of the selected publications. Following that, the selected papers are evaluated in terms of the optimization targets as well as their spatial patterns. Structure's optimization four key steps, including modeling, optimization techniques, formulation of optimization concerns and computational tools, are also researched and examined in depth. Finally, research gaps in contemporary works are identified, as well as suggested guidance for future works.
PurposeThe purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been drawn to the expanding trend of optimization since the turn of the century. The rate of research can be used to measure the progress and increase of this optimization procedure. This study is phenomenal to understand the optimization process and different algorithms in addition to their application by keeping in mind the current computational power that has increased the implementation for several engineering applications.Design/methodology/approachTwo-dimensional analysis has been carried out for the optimization process and its approaches to addressing optimization problems, i.e. computational power has increased the implementation. The first section focuses on a thorough examination of the optimization process, its objectives and the development of processes. Second, techniques of the optimization process have been evaluated, as well as some new ones that have emerged to overcome the above-mentioned problems.FindingsThis paper provided detailed knowledge of optimization, several approaches and their applications in civil engineering, i.e. structural, geotechnical, hydraulic, transportation and many more. This research provided tremendous emerging techniques, where the lack of exploratory studies is to be approached soon.Originality/valueOptimization processes have been studied for a very long time, in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, different techniques and their prediction modes often require high computational strength, such parameters can be mitigated with the use of different techniques to reduce computational cost and increase accuracy.
The flow field analysis of a liquid ejector pump is important for its design improvements, performance estimation and understanding of mixing and entrainment phenomenon. Ejector pumps, due to their simpler design and ease of maintenance are used in a variety of industrial applications. The subject pump, under consideration in this study, is used for transferring fuel from one fuel tank to another in a fighter aircraft. To study the underlying flow field characteristics of subject ejector pump, the fluid domain is simulated using Embedded LES turbulence modelling technique in Ansys Fluent ® environment. The flow field and performance parameters of subject pump are then compared with that of previously researched study of same pump wherein Standard K-ε RANS Turbulence Model was used. It is revealed that the results obtained using Embedded LES are much closer to experimental data than that of Standard K-ε. The limitations of RANS turbulence model for accurate simulation of complex flow field of subject pump are then identified, analyzed and discussed in details by studying the flow characteristics such as Reynolds shear stresses distribution, Potential Core estimation and turbulent viscosity modelling, obtained using both turbulent models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.