Amyloid‐β (Aβ) deposition in the brain has been implicated in the development of Alzheimer's disease (AD), and neuroinflammation generates AD progression. Therapeutic effects of anti‐inflammatory approaches in AD are still under investigation. Curcumin, a potent anti‐inflammatory and antioxidant, has demonstrated therapeutic potential in AD models. However, curcumin's anti‐inflammatory molecular mechanisms and its associated cognitive impairment mechanisms in AD remain unclear. The high‐mobility group box‐1 protein (HMGB1) participates in the regulation of neuroinflammation. Herein, we attempted to evaluate the anti‐inflammatory effects of chronic oral administration of curcumin and HMGB1 expression in APP/PS1 transgenic mice AD model. We found that transgenic mice treated with a curcumin diet had shorter escape latencies and showed a significant increase in percent alternation, when compared with transgenic mice, in the Morris water maze and Y‐maze tests. Additionally, curcumin treatment could effectively decrease HMGB1 protein expression, advanced glycosylation end product‐specific receptor (RAGE), Toll‐like receptors‐4 (TLR4) and nuclear factor kappa B (NF‐κB) in transgenic mice hippocampus. However, amyloid plaques detected with thioflavin‐S staining in transgenic mice hippocampus were not affected by curcumin treatment. In contrast, curcumin significantly decreased GFAP‐positive cells, as assessed by immunofluorescence staining. Taken together, these data indicate that oral administration of curcumin may be a promising agent to attenuate memory deterioration in AD mice, probably inhibiting the HMGB1‐RAGE/TLR4‐NF‐κB inflammatory signalling pathway.
Objective Perioperative neurocognitive disorders (PND) are a common complication in the elderly. Histone deacetylases (HDACs) are a class of enzymes that control the acetylation status of intracellular proteins. Thus, we explored whether HDACs trigger the release of high mobility group box 1 (HMGB1) through altering the acetylation status in the hippocampi of aged mice. Materials and Methods The effect of the Class IIa HDAC in PND was explored using an in vivo form of splenectomy. Sixteen-month-old healthy male C57BL/6J mice were randomly divided into five groups: control, anesthesia plus sham surgery, anesthesia plus splenectomy, LMK235 treatment, and PBS treatment. The hippocampi were harvested on either first, third, or seventh postoperative day. Cognitive function was assessed via a Morris water maze (MWM) test. Quantitative RT-PCR, Western blots and ELISAs were carried out to assess the targeted gene expression at transcriptional and translational levels. Results Splenectomy led to a significant deficiency in spatial memory acquisition, marked decreases in mRNA and protein levels of HDAC4 and HDAC5 in the hippocampus, and increases in the levels of total HMGB1 and acetylated HMGB1. In a similar fashion to splenectomy, treatment with the HDAC4/5 inhibitor LMK235 produced impaired spatial memory and an increase in the expression of HMGB1 and its acetylated counterpart in the hippocampus. Conclusion These results suggest that surgery leads to PND through class IIa HDAC downregulation-triggered HMGB1 release in hippocampus of aged mice. HDACs may be a potential therapeutic target for postoperative cognitive dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.