Based on recent results obtained by the authors on the inverse scattering method of the vector nonlinear Schrödinger equation with integrable boundary conditions, we discuss the factorization of the interactions of N -soliton solutions on the half-line. Using dressing transformations combined with a mirror image technique, factorization of soliton-soliton and soliton-boundary interactions is proved. We discover a new object, which we call reection map, that satises a set-theoretical reection equation which we also introduce. Two classes of solutions for the reection map are constructed. Finally, basic aspects of the theory of the set-theoretical reection equation are introduced.
We investigate the Manakov model or, more generally, the vector nonlinear Schrödinger equation on the half-line. Using a Bäcklund transformation method, two classes of integrable boundary conditions are derived: mixed Neumann/Dirichlet and Robin boundary conditions. Integrability is shown by constructing a generating function for the conserved quantities. We apply a nonlinear mirror image technique to construct the inverse scattering method with these boundary conditions. The important feature in the reconstruction formula for the fields is the symmetry property of the scattering data emerging from the presence of the boundary. Particular attention is paid to the discrete spectrum. An interesting phenomenon of transmission between the components of a vector soliton interacting with the boundary is demonstrated. This is specific to the vector nature of the model and is absent in the scalar case. For one-soliton solutions, we show that the boundary can be used to make certain components of the incoming soliton vanishingly small. This is reminiscent of the phenomenon of light polarization by reflection.
Based on the theory of integrable boundary conditions (BCs) developed by Sklyanin, we provide a direct method for computing soliton solutions of the focusing nonlinear Schrödinger equation on the half‐line. The integrable BCs at the origin are represented by constraints of the Lax pair, and our method lies on dressing the Lax pair by preserving those constraints in the Darboux‐dressing process. The method is applied to two classes of solutions: solitons vanishing at infinity and self‐modulated solitons on a constant background. Half‐line solitons in both cases are explicitly computed. In particular, the boundary‐bound solitons, which are static solitons bounded at the origin, are also constructed. We give a natural inverse scattering transform interpretation of the method as evolution of the scattering data determined by the integrable BCs in space.
Abstract. We propose the notion of integrable boundary in the context of discrete integrable systems on quad-graphs. The equation characterizing the boundary must satisfy a compatibility equation with the one characterizing the bulk that we called the threedimensional (3D) boundary consistency. In comparison to the usual 3D consistency condition which is linked to a cube, our 3D boundary consistency condition lives on a half of a rhombic dodecahedron. The We provide a list of integrable boundaries associated to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris. Then, the use of the term "integrable boundary" is justified by the facts that there are Bäcklund transformations and a zero curvature representation for systems with boundary satisfying our condition. We discuss the three-leg form of boundary equations, obtain associated discrete Toda-type models with boundary and recover previous results as particular cases. Finally, the connection between the 3D boundary consistency and the set-theoretical reflection equation is established.
The set-theoretical reflection equation and its solutions, the reflection maps, recently introduced by two of the authors, is presented in general and then applied in the context of quadrirational Yang-Baxter maps. We provide a method for constructing reflection maps and we obtain a classification of solutions associated to all the families of quadrirational Yang-Baxter maps that have been classified recently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.