In the past decade, multi-view clustering has received a lot of attention due to the popularity of multi-view data. However, not all samples can be observed from every view due to some unavoidable factors, resulting in the incomplete multi-view clustering (IMC) problem. Up until now, most efforts for the IMC problem have been made on the learning of consensus representations or graphs, while many missing views are ignored, making it impossible to capture the information hidden in the missing view. To overcome this drawback, we first analyzed the low-rank relationship existing inside each graph and among all graphs, and then propose a novel method for the IMC problem via low-rank graph tensor completion. Specifically, we first stack all similarity graphs into a third-order graph tensor and then exploit the low-rank relationship from each mode using the matrix nuclear norm. In this way, the connection hidden between the missing and available instances can be recovered. The consensus representation can be learned from all completed graphs via multi-view spectral clustering. To obtain the optimal multi-view clustering result, incomplete graph recovery and consensus representation learning are integrated into a joint framework for optimization. Extensive experimental results on several incomplete multi-view datasets demonstrate that the proposed method can obtain a better clustering performance in comparison with state-of-the-art incomplete multi-view clustering methods.
In recent years, with the continuous deepening of the urbanization process, the problem of urban ruins (URs) has become prominent. This significantly affects the happiness of residents around the URs, the overall image of the city, and the environment, and it has become an important issue in urban construction. At present, the types of urban ruins mainly include industrial ruins, abandoned urban buildings, and war sites. Generally, methods such as demolition and reconstruction of original buildings or upgrading and transformation are used to reuse URs, and some of them have achieved fruitful results. However, the current renovation of URs is based on fragmented renovation strategies for different URs without a systematic and universally applicable renovation methodology. With the development of artificial intelligence, technologies such as Generative Adversarial Network (GAN), Easy DL, and Natural Language Processing (NLP) can provide technical support for urban ruin reconstruction, from design to operation. Specifically in the present study, the ten representative URs in Guangzhou are first evaluated by the Analytic Hierarchy Process and then combined with AI methods, such as the adversarial generative networks and big data applications, into the reuse design of URs. Finally, a complete research system is established to implement URs’ projects, which provides a clearer systematic planning strategy for the reuse of URs in the future.
Since real-world multiview data frequently contains numerous samples that are not observed from some viewpoints, the incomplete multiview clustering (IMC) issue has received a great deal of attention recently. However, most existing IMC methods choose to zero-fill the missing instances, which leads to the failure to exploit information hidden in the missing instances, and high-order interactions between various views. To tackle these problems, we proposed an effective IMC method using low-rank tensor ring completion, which was demonstrated to be powerful in exploiting high-order correlation. Specifically, we first stack the incomplete similarity graphs of all views into a 3rd-order incomplete tensor and then restore it via the tensor ring decomposition. Next, using an adaptive weighting technique, we apply multiview spectral clustering to all entire graphs in order to balance the contributions of different viewpoints and identify the consensus representation for grouping. Finally, we employ the alternating direction method of multipliers (ADMM) to optimize the suggested model. Numerous experimental findings on numerous different datasets show that the suggested approach is superior to other cutting-edge approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.