Inflammatory myofibroblastic tumor (IMT) of the biliary tract is rare, and often difficult to diagnose or to distinguish from other tumors due to its atypical clinical presentation and nonspecific radiological features. Histologically, IMTs are (myo)fibroblastic neoplasms with a prominent inflammatory infiltrate. They are characterized by receptor tyrosine kinase gene rearrangements, most often involving an anaplastic lymphoma kinase (ALK ) translocation. The final diagnosis of IMT depends on histopathology and immunohistochemical examination. In this manuscript, we provide a clinical and morphomolecular overview of IMT and the difficulties that may arise in using immunohistochemical and molecular techniques in diagnosing IMT.
The prevalence of obesity has increased worldwide in recent decades. Genetic factors are now known to play a substantial role in the predisposition to obesity and may contribute up to 70% of the risk for obesity. Technological advancements during the last decades have allowed the identification of many hundreds of genetic markers associated with obesity. However, the transformation of current genetic variant-obesity associations into biological knowledge has been proven challenging. Genomics and proteomics are complementary fields, as proteomics extends functional analyses. Integrating genomic and proteomic data can help to bridge a gap in knowledge regarding genetic variantobesity associations and to identify new drug targets for the treatment of obesity. We provide an overview of the published papers on the integrated analysis of proteomic and genomic data in obesity and summarize four mainstream strategies: overlap, colocalization, Mendelian randomization, and proteome-wide association studies. The integrated analyses identified many obesity-associated proteins, such as leptin, follistatin, and adenylate cyclase 3. Despite great progress, integrative studies focusing on obesity are still limited. There is an increased demand for large prospective cohort studies to identify and validate findings, and further apply these findings to the prevention, intervention, and treatment of obesity. In addition, we also discuss several other potential integration methods.
IntroductionIt has been suggested that type 1 diabetes was associated with increased COVID-19 morbidity and mortality. However, their causal relationship is still unclear. Herein, we performed a two-sample Mendelian randomization (MR) to investigate the causal effect of type 1 diabetes on COVID-19 infection and prognosis.Research design and methodsThe summary statistics of type 1 diabetes were obtained from two published genome-wide association studies of European population, one as a discovery sample including 15 573 cases and 158 408 controls, and the other data as a replication sample consisting of 5913 cases and 8828 controls. We first performed a two-sample MR analysis to evaluate the causal effect of type 1 diabetes on COVID-19 infection and prognosis. Then, reverse MR analysis was conducted to determine whether reverse causality exists.ResultsMR analysis results showed that the genetically predicted type 1 diabetes was associated with higher risk of severe COVID-19 (OR=1.073, 95% CI: 1.034 to 1.114, pFDR=1.15×10−3) and COVID-19 death (OR=1.075, 95% CI: 1.033 to 1.119, pFDR=1.15×10−3). Analysis of replication dataset showed similar results, namely a positive association between type 1 diabetes and severe COVID-19 (OR=1.055, 95% CI: 1.029 to 1.081, pFDR=1.59×10−4), and a positively correlated association with COVID-19 death (OR=1.053, 95% CI: 1.026 to 1.081, pFDR=3.50×10−4). No causal association was observed between type 1 diabetes and COVID-19 positive, hospitalized COVID-19, the time to the end of COVID-19 symptoms in the colchicine treatment group and placebo treatment group. Reverse MR analysis showed no reverse causality.ConclusionsType 1 diabetes had a causal effect on severe COVID-19 and death after COVID-19 infection. Further mechanistic studies are needed to explore the relationship between type 1 diabetes and COVID-19 infection and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.