The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for malaria elimination. To characterise the genetic diversity of this parasite within individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region, and analysed data on >300,000 SNPs and 9 regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at novel loci, and these varied markedly between geographical locations. These findings reveal a dynamic landscape of local evolutionary adaptation in P. vivax populations, and provide a foundation for genomic surveillance to guide effective strategies for control and elimination.
Responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through binding of the viral spike protein (SARS-2-S) to the cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Here we show that the high-density lipoprotein (HDL) scavenger receptor B type 1 (SR-B1) facilitates ACE2-dependent entry of SARS-CoV-2. We find that the S1 subunit of SARS-2-S binds to cholesterol and possibly to HDL components to enhance viral uptake in vitro. SR-B1 expression facilitates SARS-CoV-2 entry into ACE2-expressing cells by augmenting virus attachment. Blockade of the cholesterol-binding site on SARS-2-S1 with a monoclonal antibody, or treatment of cultured cells with pharmacological SR-B1 antagonists, inhibits HDL-enhanced SARS-CoV-2 infection. We further show that SR-B1 is coexpressed with ACE2 in human pulmonary tissue and in several extrapulmonary tissues. Our findings reveal that SR-B1 acts as a host factor that promotes SARS-CoV-2 entry and may help explain viral tropism, identify a possible molecular connection between COVID-19 and lipoprotein metabolism, and highlight SR-B1 as a potential therapeutic target to interfere with SARS-CoV-2 infection.
Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.
17The emergence of a novel coronavirus, SARS-CoV-2, resulted in a pandemic. Here, we used X-ray 18 structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from 19 SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, 20 and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins 21 known to serve or not serve as receptor allows to define residues important for binding. From the 20 22 amino acids in ACE2 that contact S up to seven can be replaced and ACE2 can still function as the SARS-23CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery 24 of the binding site, while changes of the invariable residues prevent S-binding or infection of the 25 respective animal. Some ACE2 proteins even tolerate the loss or the acquisition of N-glycosylation sites 26 located near the S-interface. Of note, Pigs and dogs, which are not or not effectively infected and have 27 only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. 28Comparison of the RBD of S of SARS-CoV-2 with viruses from Bat-CoV-RaTG13 and Pangolin-CoV 29 revealed that the latter contains only one substitution, whereas the Bat-CoV-RaTG13 exhibits five. 30However, ACE2 of pangolin exhibit seven changes relative to human ACE2, a similar number of 31 substitutions is present in ACE2 of bats, raccoon, and civet suggesting that SARS-CoV-2 may not 32 especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new 33 insight into the receptor usage and animal source/origin of SARS-CoV-2. 34 IMPORTANCE 35 SARS-CoV-2 is threatening people worldwide and there are no drugs or vaccines available to mitigate 36 its spread. The origin of the virus is still unclear and whether pets and livestock can be infected and 37 transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host 38 receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis 39 provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from 40 species known to support SARS-CoV-2 infection tolerate many amino acid changes indicating that the 41 species barrier might be low. An exception are dogs and especially pigs, which, however, revealed 42
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.