This work aimed to develop the submerged cultivation conditions for improved exopolysaccharides (EPS) production by Armillaria luteo-virens Sacc. The effects of culture temperature, aeration rate, inoculum level, initial pH, and additives on EPS formation and mycelial growth are investigated. The aeration rate, initial pH, and inoculum level significantly affected EPS production under the submerged cultivation. The developed conditions were as follows: cultivation temperature 23 °C, initial pH 5.0, aeration rate 0.5 vvm, 0.5% Tween 80, inoculum level 5% (v/v), and shaking speed 120 r/min. Under the developed conditions, the highest EPS production was 13.01 g/L at 5 days culture time. EPS production was examined in a 5 L bioreactor, and an unstructured kinetic model for EPS formation was well developed. The verified investigations in the large-scale cultivation system showed that the developed models are able to predict the submerged cultivation process of EPS formation. Current results revealed that the submerged cultivation conditions can be utilized to control EPS production, and the unstructured models developed are suitable for explaining EPS production by A. luteo-virens Sacc QH in a large-scale cultivation bioreactor.
The agro-byproduct culture medium for α-galactosidase production by Aspergillus niger zju-Y1 was optimized with flask-SSF via response surface methodology, maximum α-galactosidase yield at the level of 230.159 U/g dry matter was achieved by using wheat bran and soybean meal as culture medium components. Furthermore, based on the flask-SSF results, the three-section-control strategy was developed for scale-up SSF, making fermentation steadily and efficiently, and the α-galactosidase activity hitting to 174.410 U/g dry matter, which is close to the result of flask-SSF. The results demonstrated that a feasible scale-up SSF mode for α-galactosidase production is successfully set up by combining the utilization of agro-byproduct culture medium and three-section-control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.