The transition of land use function and its effects on ecosystem services is a key issue in eco-environmental protection and is the basis of territorial space governance and optimization. Previous studies have typically selected land use types to evaluate ecosystem service value (ESV) and have overlooked comprehensive characteristics of ecosystem services and the mutual feedback relationship between human social systems and the ecosystem. Taking the Three Gorges Reservoir Area, Hubei section (TGRA-HS) as a case study, we used a transition matrix, the revised ESV method, and an ecological contribution rate model to explore land use function transition (LUFT) and its effects on the change in ESV based on the production–living–ecological space (PLES) classification system. The results show that: (1) The transition of land use function based on PLES was the mapping of the evolution of the human–nature relationship in the spatial pattern, which reflected the evolution of the spatial pattern caused by human interference with the continuous development of society; (2) The evolution of PLES showed the characteristics of a reduction in production space (P-space), and an expansion in living space (L-space) and ecological space (E-space). The distribution pattern of PLES from 1990 to 2020 was basically the same, and the characteristics of structural transform reflected the characteristics of project construction in different phases; (3) The E-space contributed the most to the total ESV, and it has risen by CNY 13.06 × 108. The transition of land use function caused by human construction projects impacts the spatiotemporal change in the regional ESV; (4) The change in ESV induced by LUFT revealed the whole dynamic process of the positive and negative effects of human construction projects on ecosystem services, and the two effects offset each other to keep the ESV relatively stable. The transition of E-space to P-space had the greatest impact on the reduction in ESV, whose contribution rate was 82.76%. The dynamic changes in land use function and ESV corresponding to the different stages of the Three Gorges Project’s (TGP) construction reveals the important driving effect of human activities on ecosystem services. It reminds us that humans should not forget to protect the eco-environment when obtaining services from the ecosystem.
Ecosystem services (ESs) are an essential link between ecosystems and human well-being, and trade-offs/synergies happen in ESs at different temporal and spatial scales. It is crucial to explore patterns of trade-offs/synergies among ESs, and their nonlinear relationships with changes in ESs. The primary objective of this study was to evaluate five ESs in 2000 and 2018: namely, water yield, food production, carbon sequestration, soil conservation, and habitat quality in mountainous regions of Southwest China. The mean values of the five ESs increased by 365.8 m3/ha, 13.92 t/hm2, 497.09 TgC/yr2, 138.48 t/km2, and 0.002, respectively. Using spatial statistics and analysis, an ES trade-off synergy model (ESTD) was constructed for the five ESs change values. Overall, soil conservation has a trade-off with all five ESs, except habitat quality; this trade-off is increasing slightly. Water yield is in synergy with all ESs except soil conservation, with decreasing synergy; habitat quality is in synergy with all ESs except food production, with increasing synergy. Finally, the nonlinear relationship between the value of the change in the ES and ESTD was analyzed using a generalized additive model. Changes in water yield showed the greatest impact on ESTD except for food production, wherein changes in all three ESs had minimal impacts on ESTD. Food production dominates its trade-offs/synergies relationship with soil conservation; carbon sequestration is the dominant player in its trade-offs/synergies relationship with soil conservation. Habitat quality has a secondary position of influence, except in the trade-offs/synergies involving food production. By exploring the drivers of trade-offs/synergies among ESs, this study can provide guidance for the effective implementation of policies related to ecological protection and restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.