Inspired by the implementation of the fractional Fourier transform (FRFT) and its applications in optics, we address the problem of reconstructing a signal from its several FRFT magnitudes (or intensities). The matrix completion method is adopted here. Through numerical tests, the matrix completion method is proven effective in both noisy and noise-free situations. We also compare our method with the Gerchberg-Saxton (GS) algorithm based on FRFT. Numerical tests show that the matrix completion method gains a certain advantage in recovering uniqueness and convergence over the GS algorithm in the noise-free case. Furthermore, in terms of noisy signals, the matrix completion method performs robustly and adding more measurements can generally increase accuracy of recovered signals.
We propose a new multi-moment numerical solver for hyperbolic conservation laws by using the alternating polynomial reconstruction approach. Unlike existing multi-moment schemes, our approach updates model variables by implementing two polynomial reconstructions alternately. First, Hermite interpolation reconstructs the solution within the cell by matching the point-based variables containing both physical values and their spatial derivatives. Then the reconstructed solution is updated by the Euler method. Second, we solve a constrained least-squares problem to correct the updated solution to preserve the conservation laws. Our method enjoys the advantages of a compact numerical stencil and high-order accuracy. Fourier analysis also indicates that our method allows a larger CFL number compared with many other high-order schemes. By adding a proper amount of artificial viscosity, shock waves and other discontinuities can also be computed accurately and sharply without solving an approximated Riemann problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.