Video anomaly detection is commonly used in many applications such as security surveillance and is very challenging. A majority of recent video anomaly detection approaches utilize deep reconstruction models, but their performance is often suboptimal because of insufficient reconstruction error differences between normal and abnormal video frames in practice. Meanwhile, frame prediction-based anomaly detection methods have shown promising performance. In this paper, we propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design which is more in line with the characteristics of surveillance videos. The proposed method is equipped with a multi-path ConvGRU-based frame prediction network that can better handle semantically informative objects and areas of different scales and capture spatial-temporal dependencies in normal videos. A noise tolerance loss is introduced during training to mitigate the interference caused by background noise. Extensive experiments have been conducted on the CUHK Avenue, ShanghaiTech Campus, and UCSD Pedestrian datasets, and the results show that our proposed method outperforms existing state-of-the-art approaches. Remarkably, our proposed method obtains the frame-level AUC score of 88.3% on the CUHK Avenue dataset.
In the IoT era, 5G will enable various IoT services such as broadband access everywhere, high user and devices mobility, and connectivity of massive number of devices. Radio environment map (REM) can be applied to improve the utilization of radio resources for the access control of IoT devices by allocating them reasonable wireless spectrum resources. However, the primary problem of constructing REM is how to collect the large scale of data. Mobile crowd sensing (MCS), leveraging the smart devices carried by ordinary people to collect information, is an effective solution for collecting the radio environment information for building the REM. In this paper, we build a REM collecting prototype system based on MCS to collect the data required by the radio environment information. However, limited by the budget of the platform, it is hard to recruit enough participants to join the sensing task to collect the radio environment information. This will make the radio environment information of the sensing area incomplete, which cannot describe the radio information accuracy. Considering that the Kriging algorithm has been widely used in geostatistics principle for spatial interpolation for Kriging giving the best unbiased estimate with minimized variance, we utilize the Kriging interpolation algorithm to infer complete radio environment information from collected sample radio environment information data. The interpolation performance is analyzed based on the collected sample radio environment information data. We demonstrate experiments to analyze the Kriging interpolation algorithm interpolation results and error and compared them with the nearest neighbor (NN) and the inverse distance weighting (IDW) interpolation algorithms. Experiment results show that the Kriging algorithm can be applied to infer radio environment information data based on the collected sample data and the Kriging interpolation has the least interpolation error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.