This study contrasted the impact of Tai Chi Chuan and general aerobic exercise on brain plasticity in terms of an increased grey matter volume and functional connectivity during structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI), explored the advantages of Tai Chi Chuan in improving brain structure and function. Thirty-six college students were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking) and control groups. Individuals were assessed with a sMRI and rs-fMRI scan before and after an 8-week training period. The VBM toolbox was used to conduct grey matter volume analyses. The CONN toolbox was used to conduct several seed-to-voxel functional connectivity analyses. We can conclude that compared with general aerobic exercise, eight weeks of Tai Chi Chuan exercise has a stronger effect on brain plasticity, which is embodied in the increase of grey matter volume in left middle occipital gyrus, left superior temporal gyrus and right middle temporal gyrus and the enhancement of functional connectivity between the left middle frontal gyrus and left superior parietal lobule. These findings demonstrate the potential and advantages of Tai Chi Chuan exercises in eliciting brain plasticity.
Objective: This study used resting-state functional magnetic resonance imaging to investigate the effects of 8 weeks of Tai Chi Chuan and general aerobic exercise on the topological parameters of brain functional networks, explored the advantages of Tai Chi Chuan for improving functional network plasticity and cognitive flexibility, and examined how changes in topological attributes of brain functional networks relate to cognitive flexibility.Methods: Thirty-six healthy adults were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking), and control groups. All of the subjects underwent fMRI and behavioral assessment before and after the exercise intervention.Results: Tai Chi Chuan exercise significantly enhanced the clustering coefficient and local efficiency compared with general aerobic exercise. Regarding the nodal properties, Tai Chi Chuan significantly enhanced the nodal clustering coefficient of the bilateral olfactory cortex and left thalamus, significantly reduced the nodal clustering coefficient of the left inferior temporal gyrus, significantly improved the nodal efficiency of the right precuneus and bilateral posterior cingulate gyrus, and significantly improved the nodal local efficiency of the left thalamus and right olfactory cortex. Furthermore, the behavioral performance results demonstrated that cognitive flexibility was enhanced by Tai Chi Chuan. The change in the nodal clustering coefficient in the left thalamus induced by Tai Chi Chuan was a significant predictor of cognitive flexibility.Conclusion: These findings demonstrated that Tai Chi Chuan could promote brain functional specialization. Brain functional specialization enhanced by Tai Chi Chuan exercise was a predictor of greater cognitive flexibility.
Tai Chi Chuan (TCC) is assumed to exert beneficial effects on functional brain activity and cognitive function in elders. Until now, empirical evidence of TCC induced intra-regional spontaneous neural activity and inhibitory control remains inconclusive. Whether the effect of TCC is better than that of other aerobic exercises is still unknown, and the role of TCC in younger adults is not yet fully understood. Here we used resting-state functional MRI (fMRI) to investigate the effects of 8-week TCC (n = 12) and brisk walking (BW, n = 12) on inhibitory control and fractional amplitude of low-frequency fluctuations (fALFF). The results found that TCC had significant effects on inhibitory control performance and spontaneous neural activity that were associated with significantly increased fALFF in the left medial superior frontal gyrus (Cohen’s d = 1.533) and the right fusiform gyrus (Cohen’s d = 1.436) and decreased fALFF in the right dorsolateral superior frontal gyrus (Cohen’s d = 1.405) and the right paracentral lobule (Cohen’s d = 1.132).TCC exhibited stronger effects on spontaneous neural activity than the BW condition, as reflected in significantly increased fALFF in the left medial superior frontal gyrus (Cohen’s d = 0.862). There was a significant positive correlation between the increase in fALFF in the left medial superior frontal gyrus and the enhancement in inhibitory control performance. The change in fALFF in the left medial superior frontal gyrus was able to explain the change in inhibitory control performance induced by TCC. In conclusion, our results indicated that 8 weeks of TCC intervention could improve processing efficiency related to inhibitory control and alter spontaneous neural activity in young adults, and TCC had potential advantages over BW intervention for optimizing spontaneous neural activity.
ObjectiveThis study investigated the effects of 12 weeks of specifically designed physical activity intervention on working memory and motor competence in preschool children and explored the correlation between working memory changes and motor competence changes by the intervention.MethodsFour classes of preschool children were grouped into an intervention group and a control group. Children in the intervention group received a 12-week physical activity intervention, while children in the control group followed their daily routine as usual. Before and after the intervention period, children were assessed with the 1-back task and Movement Assessment Battery for Children, second edition (MABC-2) to measure their working memory and motor competence, respectively.ResultsRegarding working memory, the accuracy on the 1-back task increased significantly in the intervention group relative to the control group. The intervention group demonstrated a greater decrease in response time from pre- to posttest than the control group, but the difference was not statistically significant. Regarding motor competence, children's manual dexterity, aiming and catching and total score increased significantly in the intervention group relative to the control group, while no significant difference in static and dynamic balance was observed between the two groups. Furthermore, the correlation results showed that changes in the efficacy and efficiency of working memory were positively related to changes in static and dynamic balance and the total score on the MABC-2.ConclusionThese findings demonstrated that 12 weeks of specifically designed physical activity intervention could improve preschool children's efficacy of working memory as well as manual dexterity, aiming and catching and global motor competence. The improvement in the efficacy and efficiency of working memory was positively related to the improvement in static and dynamic balance and global motor competence.
Through empirical studies or laboratory tests, previous studies have shown that sport-confidence, attention, and emotion regulation are key factors in archery performance. The present study aims to further identify the effects and pathways of sport-confidence, attention, and cognitive reappraisal (a specific emotion regulation strategy) on real-world archery performance by constructing a hypothesized model to provide a basis for scientific training of athletes to improve sport performance. A survey design was utilized on a sample of 61 athletes (12 international-level athletes, 30 national-level athletes, and 19 first-class athletes) from the Chinese National Archery Team to test the model. The measurement and hypothesized models were tested using partial least squares structural equation modeling (PLS-SEM). The results indicate that the model fit well and explained 33.6% of the variance in archery performance. Sport-confidence (total effects = 0.574, p < 0.001) and attention (total effects = 0.344, p = 0.009) were important predictive indicators of archery performance, while the relationship between cognitive reappraisal and archery performance showed considerable complexity (direct effects = −0.268, p = 0.020; total effects = −0.007, p = 0.964). We conclude that the development of sport-confidence and attention of archery athletes should be strengthened, but athletes who use cognitive reappraisal in archery competition should be mindful of its potential appropriation of cognitive resources and should be directed to improve sport-confidence or develop a positive orientation to arouse excitement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.