There are three major dendritic cell (DC) subsets in both humans and mice, that is, plasmacytoid DCs and two types of conventional DCs (cDCs), cDC1s and cDC2s. cDC2s are important for polarizing CD4 naive T cells into different subsets, including Th1, Th2, Th17, Th22, and regulatory T cells. In mice, cDC2s can be further divided into phenotypically and functionally distinct subgroups. However, subsets of human cDC2s have not been reported. In the present study, we showed that human blood CD1c cDCs (cDC2s) can be further separated into two subpopulations according to their CD5 expression status. Comparative transcriptome analyses showed that the CD5 DCs expressed higher levels of cDC2-specific genes, including IFN regulatory factor 4, which is essential for the cDC2 development and its migration to lymph nodes. In contrast, CD5 DCs preferentially expressed monocyte-related genes, including the lineage-specific transcription factor MAFB. Furthermore, compared with the CD5 subpopulation, the CD5 subpopulation showed stronger migration toward CCL21 and overrepresentation among migratory DCs in lymph nodes. Additionally, the CD5 DCs induced naive T cell proliferation more potently than did the CD5 DCs. Moreover, CD5 DCs induced higher levels of IL-10-, IL-22-, and IL-4-producing T cell formation, whereas CD5 DCs induced higher levels of IFN-γ-producing T cell formation. Thus, we show that human blood CD1c cDC2s encompass two subsets that differ significantly in phenotype, that is, gene expression and functions. We propose that these two subsets of human cDC2s could potentially play contrasting roles in immunity or tolerance.
Recent studies have shown that long non-coding RNAs (lncRNAs) have critical roles in tumorigenesis, including osteosarcoma. The lncRNA taurine-upregulated gene 1 (TUG1) was reported to be involved in the progression of osteosarcoma. Here, we investigated the role of TUG1 in osteosarcoma cells and the underlying mechanism. TUG1 expression was measured in osteosarcoma cell lines and human normal osteoblast cells by quantitative real-time PCR (qRT-PCR). The effects of TUG1 on osteosarcoma cells were studied by RNA interference in vitro and in vivo. The mechanism of competing endogenous RNA (ceRNA) was determined using bioinformatic analysis and luciferase assays. Our data showed that TUG1 knockdown inhibited cell proliferation and colony formation, and induced G0/G1 cell cycle arrest and apoptosis in vitro, and suppressed tumor growth in vivo. Besides, we found that TUG1 acted as an endogenous sponge to directly bind to miR-9-5p and downregulated miR-9-5p expression. Moreover, TUG1 overturned the effect of miR-9-5p on the proliferation, colony formation, cell cycle arrest, and apoptosis in osteosarcoma cells, which involved the derepression of POU class 2 homeobox 1 (POU2F1) expression. In conclusion, our study elucidated a novel TUG1/miR-9-5p/POU2F1 pathway, in which TUG1 acted as a ceRNA by sponging miR-9-5p, leading to downregulation of POU2F1 and facilitating the tumorigenesis of osteosarcoma. These findings may contribute to the lncRNA-targeted therapy for human osteosarcoma.
This study was to report the long-term outcomes and toxicities of nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). From 2009 to 2010, 869 non-metastatic NPC patients treated with IMRT were retrospectively enrolled. With a median follow-up of 54.3 months, the 5-year estimated local recurrence-free survival (LRFS), regional recurrence-free survival (RRFS), distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS) were 89.7%, 94.5%, 85.6%, 76.3%, 84.0%, respectively. In locally advanced NPC, gender, T, N, total dose of cisplatin more than 300 mg/m2 and radiation boost were independent prognostic factors for DMFS and DFS. Age, T, N and total dose of cisplatin were independent prognostic factors for OS. Radiation boost was an adverse factor for LRFS, RRFS, DMFS and DFS. Concurrent chemotherapy was not an independent prognostic factor for survival, despite marginally significant for DMFS in univariate analysis. Concurrent chemotherapy increased xerostomia and trismus, while higher total dose of cisplatin increased xerostomia and otologic toxicities. In conclusion, IMRT provided satisfactory long-term outcome for NPC, with acceptable late toxicities. Total dose of cisplatin was a prognostic factor for distant metastasis and overall survival. The role of concurrent chemotherapy and radiation boost in the setting of IMRT warrants further investigation.
BackgroundIntratumoural heterogeneity has been demonstrated to be a strong indicator of malignant transformation. Our study was to investigate pretreatment 18 F-FDG parameters, including 18 F-FDG based heterogeneity for predicting survival in patients with locally advanced nasopharyngeal carcinoma (NPC).MethodsForty newly diagnosed, biopsy-proven locally advanced NPC patients who underwent 18 F-FDG PET/CT were retrospectively included. The following PET parameters were assessed: maximum and mean standardised uptake value (SUVmax and SUVmean), metabolic tumour volume (MTV), total lesion glycolysis (TLG) and intratumoral heterogeneity index (HI). The previous parameters were recorded both for the primary tumor (-T) and neck lymph nodes (-N). The following endpoints were evaluated: local control (LC), progression-free survival (PFS) and overall survival (OS). The survival analyses were performed using the Kaplan–Meier method. Univariate analysis was performed using the log-rank test.ResultsPatients with a lower HI-T, SUVmax-T, SUVmean-T and TLG-T had significantly better 2-year LC. In predicting PFS, we found that both lower HI-T and HI-N had significantly better prognosis. However, the OS was only statistically associated with HI-T.Conclusion18 F-FDG based heterogeneity appears to be an potential predicator of patient survival after treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.