Abstract. Humic-like substances (HULIS) are a mixture of high-molecular-weight, water-soluble organic compounds that are widely distributed in atmospheric aerosol. Their sources are rarely studied quantitatively. Biomass burning is generally accepted as a major primary source of ambient humic-like substances (HULIS) with additional secondary material formed in the atmosphere. However, the present study provides direct evidence that residential coal burning is also a significant source of ambient HULIS, especially in the heating season in northern China based on source measurements, ambient sampling and analysis, and apportionment with source-oriented CMAQ modeling. Emission tests show that residential coal combustion produces 5 % to 24 % of the emitted organic carbon (OC) as HULIS carbon (HULISc). Estimation of primary emissions of HULIS in Beijing indicated that residential biofuel and coal burning contribute about 70 % and 25 % of annual primary HULIS, respectively. Vehicle exhaust, industry, and power plant contributions are negligible. The average concentration of ambient HULIS in PM2.5 was 7.5 µg m−3 in urban Beijing and HULIS exhibited obvious seasonal variations with the highest concentrations in winter. HULISc accounts for 7.2 % of PM2.5 mass, 24.5 % of OC, and 59.5 % of water-soluble organic carbon. HULIS are found to correlate well with K+, Cl−, sulfate, and secondary organic aerosol, suggesting its sources include biomass burning, coal combustion, and secondary aerosol formation. Source apportionment based on CMAQ modeling shows residential biofuel and coal burning and secondary formation are important sources of ambient HULIS, contributing 47.1 %, 15.1 %, and 38.9 %, respectively.
We present a comprehensive investigation of main-sequence binaries in the DRAGON simulations, which are the first one-million-particle direct N-body simulations of globular clusters. We analyze the orbital parameters of the binary samples in two of the DRAGON simulations, D1-R7-IMF93 and D2-R7-IMF01, focusing on their secular evolution and correlations up to 12 Gyr. These two models have different initial stellar mass functions: Kroupa 1993 (D1-R7-IMF93) and Kroupa 2001 (D2-R7-IMF01); and different initial mass-ratio distributions: random paring (D1-R7-IMF93) and a power law (D1-R7-IMF93). In general, the mass ratio of a population of binaries increases over time due to stellar evolution, which is less significant in D2-R7-IMF01. In D1-R7-IMF93, primordial binaries with a mass ratio q ≈ 0.2 are most common, and the frequency linearly declines with increasing q at all times. Dynamical binaries of both models have higher eccentricities and larger semimajor axes than primordial binaries. They are preferentially located in the inner part of the star cluster. Secular evolution of binary orbital parameters does not depend on the initial mass-ratio distribution, but is sensitive to the initial binary distribution of the system. At t = 12 Gyr, the binary fraction decreases radially outwards, and mass segregation is present. A color difference of 0.1 mag in F330W − F814W and 0.2 mag in NUV − y between the core and the outskirts of both clusters is seen, which is a reflection of the binary radial distribution and the mass segregation in the cluster. The complete set of data for primordial and dynamical binary systems at all snapshot intervals is made publicly available.
We present results from a suite of eight direct N-body simulations, performed with Nbody6++GPU, representing realistic models of rotating star clusters with up to 1.1 × 105 stars. Our models feature primordial (hard) binaries, a continuous mass spectrum, differential rotation, and tidal mass loss induced by the overall gravitational field of the host galaxy. We explore the impact of rotation and stellar evolution on the star cluster dynamics. In all runs for rotating star clusters we detect a previously predicted mechanism: an initial phase of violent relaxation followed by the so-called gravogyro catastrophe. We find that the gravogyro catastrophe reaches a finite amplitude, which depends in strength on the level of the bulk rotation, and then levels off. After this phase the angular momentum is transferred from high-mass to low-mass particles in the cluster (both stars and compact objects). Simultaneously, the system becomes gravothermally unstable and collapses, thus undergoing the so-called gravothermal-gravogyro catastrophe. Comparing models with and without stellar evolution, we find an interesting difference. When stellar evolution is not considered, the whole process proceeds at a faster pace. The population of heavy objects tend to form a triaxial structure that rotates in the cluster centre. When stellar evolution is considered, we find that such a rotating bar is populated by stellar black holes and their progenitors. The triaxial structure becomes axisymmetric over time, but we also find that the models without stellar evolution suffer repeated gravogyro catastrophes as sufficient angular momentum and mass are removed by the tidal field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.