Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami nanostructures are excellent building blocks for constructing tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, we present a general method for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. Interhelical distance ( D ) was identified as a critical design parameter determining tile conformation and tessellation outcome. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability, enabling the formation of single-crystalline lattices ranging from tens to hundreds of square micrometers. The general applicability of the design method was demonstrated by 9 tile geometries, 15 unique tile designs, and 12 tessellation patterns covering Platonic, Laves, and Archimedean tilings. Particularly, we took two strategies to increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and coassembling tiles of different geometries. Both yielded various tiling patterns that rivaled Platonic tilings in size and quality, indicating the robustness of the optimized tessellation system. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
The detection of biomolecules at the single molecule level has important applications in the fields of biosensing and biomedical diagnosis. The solid‐state nanopore (SS nanopore) is a sensitive tool for detecting single molecules because of its unique label‐free and low sample consumption properties. SS nanopore translocation of small biomolecules is typically driven by an electronic field force and is thus influenced by the charge, shape, and size of the target molecules. Therefore, it remains challenging to control the translocation of biomolecules through SS nanopores, particularly for different proteins with complex conformations and unique charges. Toward this problem, a DNA polyhedral carrier coating strategy to assist protein translocation through SS nanopores is developed, which facilitates target protein detection. The current signal‐to‐noise ratios are improved significantly using this DNA carrier loading strategy. The proposed method should aid the detection of proteins, which are difficult to translocate through nanopores. This coating‐assisted method offers a wide range of applications for SS nanopore detection and promotes the development of single‐molecule detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.