Recently, virtual coupling has aroused increasing interest in regard to achieving flexible and on-demand train operations. However, one of the main challenges in increasing the throughput of a train network is to couple trains quickly at junctions. Pre-programmed train operation strategies cause trains to decelerate or stop at junctions. Such strategies can reduce the coupling efficiency or even cause trains to fail to reach coupled status. To fill this critical gap, this paper proposes a cooperative game model to represent train coupling at junctions and adopts the Shapley theorem to solve the formulated game. Due to the discrete and high-dimensional characteristics of the model, the optimal solution method is non-convex and is difficult to solve in a reasonable amount of time. To find optimal operation strategies for large-scale models in a reasonable amount of time, we propose an improved particle swarm optimization algorithm by introducing self-adaptive parameters and a mutation method. This paper compares the strategy for train coupling at junctions generated by the proposed method with two naive strategies and unimproved particle swarm optimization. The results show that the operation time was reduced by using the proposed cooperative game-based optimization approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.