Resibufogenin (RB) has been used for cancer treatment, but the underlying mechanisms are still unclear. This study aimed to investigate the effects of RB treatment on colorectal cancer (CRC) cells, and to determine the underlying mechanisms. The cell counting kit‐8 assay was used to determine cell viability. Cell morphology was observed under light microscopy, and terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling assay was employed to detect cell apoptosis. Intracellular ferrous iron (Fe2+), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species levels were detected by using commercial iron assay kit, MDA assay kit, GSH assay kit, and 2,7‐dichlorodihydrofluorescein diacetate probes, respectively. The protein expressions were determined by Western blot and immunohistochemistry. RB inhibited cell viability in the CRC cell lines (HT29 and SW480) in a dose‐ and time‐dependent manner, and caused cytotoxicity to the normal colonic epithelial cell line (NCM460) at high dose. Similarly, RB induced morphological changes in CRC cells from normal to round shape, and promoted cell death. Of note, RB triggered oxidative stress and ferroptotic cell death in CRC cells, and only ferroptosis inhibitors (deferoxamine and ferrostatin‐1), instead of inhibitors for other types of cell death (apoptosis, autophagy, and necroptosis), reversed the inhibitory effects of RB on CRC cell proliferation. Furthermore, glutathione peroxidase 4 (GPX4) was inactivated by RB treatment, and overexpression of GPX4 alleviated RB‐induced oxidative cell death in CRC cells. Consistently, the in vivo experiments validated that RB also triggered oxidative stress, and inhibited CRC cells growth and tumorigenicity in mice models. RB can inhibit CRC cells growth and tumorigenesis by triggering ferroptotic cell death in a GPX4 inactivation‐dependent manner.
ObjectiveAutophagy is a cellular pathway that regulates the transportation and degradation of cytoplasmic macromolecules and organelles towards lysosome, which is often related to the tumorigenesis and tumor suppression. Here, we investigate the regulating effect of PTEN gene on autophagy-related protein P62 in rat colorectal cancer (CRC) cells and explore the application value of PTEN gene in clinic.MethodsRat colorectal cancer was induced by intraperitoneal injection of 1,2-dimethyl hydrazine in male ACI rats. A total of 20 rats were randomly selected from those successfully induced with CRC as the experimental group, while 10 healthy rats as control. The rat CRC cells were isolated and cultured. After transfecting the rat CRC cells with pEGFP-N1-PTEN plasmid, RT-PCR was adopted to examine that gene expression of p62 and PTEN, while Western blotting was used to detect the protein expression of p62 and PTEN. Also, the proliferation of CRC cells was measured by MTT assay.ResultsThe expression of PTEN gene in the experimental group was significantly inhibited as compared with the control group, while the expression of P62 gene was significantly increased (p < 0.05). Western blotting demonstrated that the PTEN protein in the experimental group was lower, while the expression of P62 protein was higher. When the CRC cells were transfected with pEGFP-N1-PTEN plasmid, the PTEN expressions were elevated, while p62 was down-regulated. Also, the proliferation of CRC cells was inhibited.ConclusionThe expression of PTEN gene is negatively correlated with the expression of P62 gene in rat CRC cells. And the expression of PTEN gene can inhibit the occurrence and development of colorectal cancer, thus providing theoretical basis for future clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.