Collective efforts of several laboratories in the past two decades have resulted in the development of various methods for Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana. Among these, the floral dip method is the most facile protocol and widely used for producing transgenic Arabidopsis plants. In this method, transformation of female gametes is accomplished by simply dipping developing Arabidopsis inflorescences for a few seconds into a 5% sucrose solution containing 0.01-0.05% (vol/vol) Silwet L-77 and resuspended Agrobacterium cells carrying the genes to be transferred. Treated plants are allowed to set seed which are then plated on a selective medium to screen for transformants. A transformation frequency of at least 1% can be routinely obtained and a minimum of several hundred independent transgenic lines generated from just two pots of infiltrated plants (20-30 plants per pot) within 2-3 months. Here, we describe the protocol routinely used in our laboratory for the floral dip method for Arabidopsis transformation. Transgenic Arabidopsis plants can be obtained in approximately 3 months.
SummaryWe have developed an estrogen receptor-based chemical-inducible system for use in transgenic plants. A chimeric transcription activator, XVE, was assembled by fusion of the DNA-binding domain of the bacterial repressor LexA (X), the acidic transactivating domain of VP16 (V) and the regulatory region of the human estrogen receptor (E; ER). The transactivating activity of the chimeric XVE factor, whose expression was controlled by the strong constitutive promoter G10-90, was strictly regulated by estrogens. In transgenic Arabidopsis and tobacco plants, estradiol-activated XVE can stimulate expression of a GFP reporter gene controlled by the target promoter, which consists of eight copies of the LexA operator fused upstream of the ±46 35S minimal promoter. Upon induction by estradiol, GFP expression levels can be eightfold higher than that transcribed from a 35S promoter, whereas the uninduced controls have no detectable GFP transcripts, as monitored by Northern blot analysis. Neither toxic nor adverse physiological effects of the XVE system have been observed in transgenic Arabidopsis plants under all the conditions tested. The XVE system thus appears to be a reliable and ef®cient chemical-inducible system for regulating transgene expression in plants.
SummaryFormation of somatic embryos in plants is known to require high concentrations of auxin or 2,4-dichlorophenoxyacetic acid (2,4-D), which presumably acts to trigger a signalling cascade. However, very little is known about the molecular mechanism that mediates the vegetative-to-embryogenic transition. We have employed a genetic approach to dissect the signal transduction pathway during somatic embryogenesis. In a functional screen using a chemical-inducible activation-tagging system, we identi®ed two alleles of Arabidopsis gene PGA6 whose induced overexpression caused high-frequency somatic embryo formation in all tissues and organs tested, without any external plant hormones. Upon inducer withdrawal, all these somatic embryos were able to germinate directly, without any further treatment, and to develop into fertile adult plants. PGA6 was found to be identical to WUSCHEL (WUS), a homeodomain protein previously shown to be involved in specifying stem cell fate in shoot and¯oral meristems. Transgenic plants carrying an estradiol-inducible XVE-WUS transgene can phenocopy pga6-1 and pga6-2. Our results suggest that WUS/PGA6 also plays a key role during embryogenesis, presumably by promoting the vegetative-to-embryogenic transition and/or maintaining the identity of the embryonic stem cells.
mRNA turnover in eukaryotes involves the removal of m 7 GDP from the 59 end. This decapping reaction is mediated by a protein complex well characterized in yeast and human but not in plants. The function of the decapping complex in the development of multicellular organisms is also poorly understood. Here, we show that Arabidopsis thaliana DCP2 can generate from capped mRNAs, m 7 GDP, and 59-phosphorylated mRNAs in vitro and that this decapping activity requires an active Nudix domain. DCP2 interacts in vitro and in vivo with DCP1 and VARICOSE (VCS), an Arabidopsis homolog of human Hedls/Ge-1. Moreover, the interacting proteins stimulate DCP2 activity, suggesting that the three proteins operate as a decapping complex. Consistent with their role in mRNA decay, DCP1, DCP2, and VCS colocalize in cytoplasmic foci, which are putative Arabidopsis processing bodies. Compared with the wild type, null mutants of DCP1, DCP2, and VCS accumulate capped mRNAs with a reduced degradation rate. These mutants also share a similar lethal phenotype at the seedling cotyledon stage, with disorganized veins, swollen root hairs, and altered epidermal cell morphology. We conclude that mRNA turnover mediated by the decapping complex is required for postembryonic development in Arabidopsis.
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.