Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-β precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of β-amyloid protein (Aβ) and β-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by transla-hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5′ untranslated region (5′UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.
Sulfuretin is a flavonoid that protects cell from damage induced by reactive oxygen species and inflammation. In this study, we investigated the role of sulfuretin in the processing of amyloid precursor protein (APP), in association with the two catalytic enzymes the α-secretase a disintegrin and metalloproteinase (ADAM10), and the beta-site APP cleaving enzyme 1 (BACE1) that play important roles in the generation of β amyloid protein (Aβ) in Alzheimer's disease (AD). We found that sulfuretin increased the levels of the immature but not the mature form of ADAM10 protein. The enhanced ADAM10 transcription by sulfuretin was mediated by the nucleotides −444 to −300 in the promoter region, and was attenuated by silencing or mutation of transcription factor retinoid X receptor (RXR) and by GW6471, a specific inhibitor of peroxisome proliferator-activated receptor α (PPAR-α). We further found that sulfuretin preferentially increased protein levels of the immature form of APP (im-APP) but significantly reduced those of BACE1, sAPPβ and β-CTF, whereas Aβ1-42 levels were slightly increased. Finally, the effect of sulfuretin on BACE1 and im-APP was selectively attenuated by the translation inhibitor cycloheximide and by lysosomal inhibitor chloroquine, respectively. Taken together, (1) RXR/PPAR-α signaling was involved in sulfuretin-mediated ADAM10 transcription. (2) Alteration of Aβ protein level by sulfuretin was not consistent with that of ADAM10 and BACE1 protein levels, but was consistent with the elevated level of im-APP protein, suggesting that im-APP, an isoform mainly localized to trans-Golgi network, plays an important role in Aβ generation.
Thioredoxin-2 (TXN2) is a mitochondrial protein and represents one of the intrinsic antioxidant enzymes. It has long been recognized that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Alzheimer's disease (AD). We hypothesized that mitochondrial TXN2 might play a role in AD-like pathology. In this study, we found that in SH-SY5Y and HEK cells stably express full-length human amyloid-β precursor protein (HEK-APP), TXN2 silencing or over-expression selectively increased or decreased the transcription of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), respectively, without altering the protein levels of others enzymes involved in the catalytic processing of APP. As a result, β-amyloid protein (Aβ) levels were significantly decreased by TXN2. In addition, in cells treated with 3-nitropropionic acid (3-NP) that is known to increase reactive oxygen species (ROS) and promote mitochondrial dysfunction, TXN2 silencing resulted in further enhancement of BACE1 protein levels, suggesting a role of TXN2 in ROS removal. The downstream signaling might involve NFκB, as TXN2 reduced the phosphorylation of p65 and IκBα; and p65 knockdown significantly attenuated TXN2-mediated regulation of BACE1. Concomitantly, the levels of cellular ROS, apoptosis-related proteins and cell viability were altered by TXN2 silencing or over-expression. In APPswe/PS1E9 mice, an animal model of AD, the cortical and hippocampal TXN2 protein levels were decreased at 12 months but not at 6 months, suggesting an age-dependent decline.Collectively, TXN2 regulated BACE1 expression and amyloidogenesis via cellular ROS and NFκB signaling. TXN2 might serve as a potential target especially for early intervention of AD.
AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic β-amyloid peptide (Aβ). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aβ in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation.Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aβ, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.