High resolution microwave spectra of the a-type, J = 1-0, transitions of He(N = 1-6)-H(12)C(14)N, He(N = 1-6)-H(13)C(14)N, He(N = 1-6)-H(12)C(15)N, He(N = 1-7)-D(12)C(14)N, and He(N = 1-6)-D(13)C(14)N clusters produced in a supersonic jet expansion were measured and analyzed. The resulting effective rotational constants, B(eff), initially decrease with the number of the attached helium atoms before reaching a minimum at N = 3 helium atoms for all isotopologues. The subsequent increase in B(eff) for N ≥ 4 is indicative of the onset of microscopic superfluidity. Comparison of our experimental B(eff) constants with those from quantum Monte Carlo simulations [A. A. Mikosz, J. A. Ramilowski, and D. Farrelly, J. Chem. Phys. 125, 014312 (2006)] reveals a nearly congruent trend in B(eff) for N up to 6. Analysis of the hyperfine structure of the (14)N containing isotopologues yielded a gradual incremental increase in the magnitude of χ(aa) and for N = 1-6, which suggests the internal rotation of the HCN molecule is becoming increasingly hindered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.