Our previous studies demonstrated that arming vaccinia viruses with marine lectins enhanced the antitumor efficacy in several cancer cells. This study aims to compare the efficacy of oncolytic vaccinia viruses harboring Tachypleus tridentatus lectin (oncoVV-TTL), Aphrocallistes vastus lectin (oncoVV-AVL), white-spotted charr lectin (oncoVV-WCL), and Asterina pectinifera lectin (oncoVV-APL) in breast cancer cells (BC). These results indicated that oncoVV-AVL elicited the highest anti-tumor effect, followed by oncoVV-APL, while oncoVV-TTL and oncoVV-WCL had lower effects in BC. Further studies showed that apoptosis and replication may work together to enhance the cytotoxicity of oncoVV-lectins in a cell-type dependent manner. TTL/AVL/APL/WCL may mediate multiple pathways, including ERK, JNK, Hippo, and PI3K pathways, to promote oncoVV replication in MDA-MB-231 cells. In contrast, these pathways did not affect oncoVV-TTL/AVL/APL/WCL replication in MCF-7 cells, suggesting that the mechanisms of recombinant viruses in MCF-7 (ER+, PR+) and MDA-MB-231 (TNBC) cells were significantly different. Based on this study, we hypothesized that ER or PR may be responsible for the differences in promoting viral replication and inducing apoptosis between MCF-7 and MDA-MB-231 cells, but the specific mechanism needs to be further explored. In addition, small-molecule drugs targeting key cellular signaling pathways, including MAPK, PI3K/Akt, and Hippo, could be conjunction with oncoVV-AVL to promote breast cancer therapy, and key pathway factors in the JNK and PI3K pathways may be related to the efficacy of oncoVV-APL/TTL/WCL. This study provides a basis for applying oncolytic vaccinia virus in breast carcinoma.
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin derived from sponges. Our previous study demonstrated that oncolytic vaccinia virus carrying AVL (oncoVV-AVL) significantly enhanced the cytotoxicity of oncoVV in cervical cancer, colorectal cancer and hepatocellular carcinoma through the activation of Ras/ERK, MAPK/ERK and PI3K/Akt signaling pathways. In this study, the inflammatory response induced by oncoVV-AVL in a hepatocellular carcinoma cell (HCC) model was investigated. The results showed that oncoVV-AVL increased the levels of inflammatory cytokines including IL-6, IL-8 and TNF-α through activating the AP-1 signaling pathway in HCC. This study provides novel insights into the utilization of lectin AVL in the field of cancer therapy.
Oncolytic viruses are being developed as novel strategies for cancer therapy. Our previous studies have shown that vaccinia viruses armed with marine lectins improved the antitumor efficacy in diverse cancer types. The objective of this study was to assess the cytotoxic effects of oncoVV harboring Tachypleus tridentatus lectin (oncoVV-TTL), Aphrocallistes vastus lectin (oncoVV-AVL), white-spotted charr lectin (oncoVV-WCL), and Asterina pectinifera lectin (oncoVV-APL) on HCC. Our data revealed that the effects of recombinant viruses on Hep-3B cells were oncoVV-AVL > oncoVV-APL > oncoVV-TTL > oncoVV-WCL; oncoVV-AVL showed stronger cytotoxicity than oncoVV-APL, while oncoVV-TTL/WCL had no effect on cell killing in Huh7 cells, and PLC/PRF/5 cells exhibited sensitivity to oncoVV-AVL/TTL but not to oncoVV-APL/WCL. The cytotoxicity of oncoVV-lectins could be enhanced by apoptosis and replication in a cell-type-dependent manner. Further research revealed that AVL may mediate various pathways, including MAPK, Hippo, PI3K, lipid metabolism, and androgen pathways through AMPK crosstalk, to promote oncoVV replication in HCC in a cell-dependent manner. OncoVV-APL replication could be affected by AMPK/Hippo/lipid metabolism pathways in Hep-3B cells, AMPK/Hippo/PI3K/androgen pathways in Huh7 cells, and AMPK/Hippo pathways in PLC/PRF/5 cells. OncoVV-WCL replication was also multi-mechanistic, which could be affected by AMPK/JNK/lipid metabolism pathways in Hep-3B cells, AMPK/Hippo/androgen pathways in Huh7 cells, and AMPK/JNK/Hippo pathways in PLC/PRF/5 cells. In addition, AMPK and lipid metabolism pathways may play critical roles in oncoVV-TTL replication in Hep-3B cells, and oncoVV-TTL replication in Huh7 cells may depend on AMPK/PI3K/androgen pathways. This study provides evidence for the application of oncolytic vaccinia viruses in hepatocellular carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.