This paper investigates optical orthogonal frequency division multiplexing (O-OFDM) systems with index modulation (IM) based on discrete Hartley transform (DHT) for visible light communications (VLC). An interesting trade-off between spectral efficiency (SE), energy efficiency, peak-to-average power ratio (PAPR) and bit error rate (BER) performance can be made by using the IM technique. And the DHT-based O-OFDM-IM systems can achieve higher SE compared with the DFT (discrete Fourier transform)-based counterparts. Employing DHT instead of DFT enables the removal of the Hermitian symmetry requirement, which contributes to transmitting more index bits and results in SE improvement. To acquire the same SE, the proposed systems can significantly lower the constellation order leading to better BER performance by contrast with the DFT-based counterparts. We employ DC (direct current) biasing and AC (Asymmetrically clipped) techniques to investigate the O-OFDM-IM systems in this paper. Simulation results indicate that SNR gains can be obtained by the DHT-based DCO/ACO-IM in comparison to the DFT-based counterparts.We also propose a novel reduced-complexity ML (maximum likelihood) detector specifically applicable to VLC. The new detector exhibits the same BER performance as the ML detector and performs better than the LLR (log-likelihood ratio) detector with reduced computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.