Background Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. MethodsIn this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0•5° × 0•5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted metaregression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FindingsGlobally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9•43% (95% eCI 7•58-11•07) of all deaths (8•52% [6•19-10•47] were coldrelated and 0•91% [0•56-1•36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51•49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0•51 percentage points (95% eCI -0•61 to -0•42) and the global heat-related excess death ratio increased by 0•21 percentage points (0•13-0•31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe.Interpretation Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios.
This study quantified mortality associated with serious infections caused by carbapenem-resistant (CRE) and carbapenem-susceptible Enterobacteriaceae (CSE). A systematic literature review was conducted, evaluating outcomes in hospitalized patients with CRE infections from a blood, urinary, pulmonary, or intra-abdominal source. A meta-analysis (MA) calculating odds ratios (ORs) for mortality was performed. Twenty-two studies met the criteria for inclusion in the MA: 12 included mortality data for CRE vs CSE populations. Compared with CSE, CRE was associated with a significantly higher risk of overall mortality (OR, 3.39; 95% confidence interval [CI], 2.35–4.89), as was monotherapy (vs combination therapy) treatment of patients with CRE infections (OR, 2.19; 95% CI, 1.00–4.80). These results document the increased mortality associated with serious CRE infections compared with CSE infections among hospitalized adults. It will be important to reevaluate the mortality in CRE and CSE populations, especially among patients who receive early appropriate therapy, as new antibiotics become available.
Chondrocyte apoptosis is an important mechanism involved in osteoarthritis (OA). Berberine (BBR), a plant alkaloid derived from Chinese medicine, is characterized by multiple pharmacological effects, such as anti-inflammatory and anti-apoptotic activities. This study aimed to evaluate the chondroprotective effect and underlying mechanisms of BBR on sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis and surgically-induced rat OA model. The in vitro results revealed that BBR suppressed SNP-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, down-regulated expressions of inducible nitric oxide synthase (iNOS) and caspase-3, and up-regulated Bcl-2/Bax ratio and Type II collagen (Col II) at protein levels, which were accompanied by increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, the anti-apoptotic effect of BBR was blocked by AMPK inhibitor Compound C (CC) and adenosine-9-β-D-arabino-furanoside (Ara A), and enhanced by p38 MAPK inhibitor SB203580. In vivo experiment suggested that BBR ameliorated cartilage degeneration and exhibited an anti-apoptotic effect on articular cartilage in a rat OA model, as demonstrated by histological analyses, TUNEL assay and immunohistochemical analyses of caspase-3, Bcl-2 and Bax expressions. These findings suggest that BBR suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via activating AMPK signaling and suppressing p38 MAPK activity.
Background To our knowledge, no study has assessed the association between heatwaves and risk of hospitalization and how it may change over time in Brazil. We quantified the heatwave–hospitalization association in Brazil during 2000–2015. Methods and findings Daily data on hospitalization and temperature were collected from 1,814 cities (>78% of the national population) in the hottest five consecutive months during 2000–2015. Twelve types of heatwaves were defined with daily mean temperatures of ≥90th, 92.5th, 95th, or 97.5th percentiles of year-round temperature and durations of ≥2, 3, or 4 consecutive days. The city-specific association was estimated using a quasi-Poisson regression with constrained distributed lag model and then pooled at the national level using random-effect meta-analysis. Stratified analyses were performed by five regions, sex, 10 age groups, and nine cause categories. The temporal change in the heatwave–hospitalization association was assessed using a time-varying constrained distributed lag model. Of the 58,400,682 hospitalizations (59% women), 24%, 34%, 21%, and 19% of cases were aged <20, 20–39, 40–59, and ≥60 years, respectively. The city-specific year-round daily mean temperatures were 23.5 ± 2.8 °C on average, varying from 26.8 ± 1.8 °C for the 90th percentile to 28.0 ± 1.6 °C for the 97.5th percentile. We observed that the risk of hospitalization was most pronounced for heatwaves characterized by high daily temperatures and long durations across Brazil, except for the minimal association in the north (the hottest region). After controlling for temperature, the association remained for severe heatwaves in the south and southeast (cold regions). Children 0–9 years, the elderly ≥70 years, and admissions for perinatal conditions were most strongly associated with heatwaves. Over the study period, the strength of the heatwave–hospitalization association declined substantially in the south, while an apparent increase was observed in the southeast. The main limitations of this study included the lack of data on individual temperature exposure and measured air pollution. Conclusions There are geographic, demographic, cause-specific, and temporal variations in the heatwave–hospitalization associations across the Brazilian population. Considering the projected increase in frequency, duration, and intensity of heatwaves, future strategies should be developed, such as building early warning systems, to reduce the health risk associated with heatwaves in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.