We have developed a stereospecific, nickel-catalyzed cross coupling of benzylic pivalates with aryl boroxines. The success of this reaction relies on the use of Ni(cod)2 as catalyst and NaOMe as a uniquely effective base. This reaction has broad scope with respect to the aryl boroxine and benzylic pivalate, enabling the synthesis of a variety of diarylalkanes and triarylmethanes in good to excellent yields and ee's.
A copper-catalyzed B-H bond insertion reaction with amine- and phosphine-borane adducts was realized with high yield and enantioselectivity under mild reaction conditions. The B-H bond insertion reaction provides a new C-B bond-forming methodology and an efficient approach to chiral organoboron compounds.
We have developed a stereospecific, nickel-catalyzed Miyaura borylation of allylic pivalates, which delivers highly enantioenriched α-stereogenic γ-aryl allylboronates with good yields and regioselectivities. Our complementary sets of conditions enable access to either enantiomer of allylboronate product from a single enantiomer of readily prepared allylic pivalate substrate. Excellent functional group tolerance, yields, regioselectivities, and stereochemical fidelities are observed. The stereochemical switch from stereoretention to stereoinversion largely depends upon solvent, and can be explained by competitive pathways for the oxidative addition step. Our mechanistic investigations support a stereoretentive pathway stemming from a directed oxidative addition and a stereoinvertive pathway that is dominant when MeCN blocks coordination of the directing group by binding the nickel catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.