We performed a genome-wide association study of esophageal squamous cell carcinoma (ESCC) by genotyping 1,077 individuals with ESCC and 1,733 control subjects of Chinese Han descent. We selected 18 promising SNPs for replication in an additional 7,673 cases of ESCC and 11,013 control subjects of Chinese Han descent and 303 cases of ESCC and 537 control subjects of Chinese Uygur-Kazakh descent. We identified two previously unknown susceptibility loci for ESCC: PLCE1 at 10q23 (P(Han combined for ESCC) = 7.46 x 10(-56), odds ratio (OR) = 1.43; P(Uygur-Kazakh for ESCC) = 5.70 x 10(-4), OR = 1.53) and C20orf54 at 20p13 (P(Han combined for ESCC) = 1.21 x 10(-11), OR = 0.86; P(Uygur-Kazakh for ESCC) = 7.88 x 10(-3), OR = 0.66). We also confirmed association in 2,766 cases of gastric cardia adenocarcinoma cases and the same 11,013 control subjects (PLCE1, P(Han for GCA) = 1.74 x 10(-39), OR = 1.55 and C20orf54, P(Han for GCA) = 3.02 x 10(-3), OR = 0.91). PLCE1 and C20orf54 have important biological implications for both ESCC and GCA. PLCE1 might regulate cell growth, differentiation, apoptosis and angiogenesis. C20orf54 is responsible for transporting riboflavin, and deficiency of riboflavin has been documented as a risk factor for ESCC and GCA.
Osteoporosis, a highly heritable disease, is characterized mainly by low bone-mineral density (BMD), poor bone geometry, and/or osteoporotic fractures (OF). Copy-number variation (CNV) has been shown to be associated with complex human diseases. The contribution of CNV to osteoporosis has not been determined yet. We conducted case-control genome-wide CNV analyses, using the Affymetrix 500K Array Set, in 700 elderly Chinese individuals comprising 350 cases with homogeneous hip OF and 350 matched controls. We constructed a genomic map containing 727 CNV regions in Chinese individuals. We found that CNV 4q13.2 was strongly associated with OF (p = 2.0 x 10(-4), Bonferroni-corrected p = 0.02, odds ratio = 1.73). Validation experiments using PCR and electrophoresis, as well as real-time PCR, further identified a deletion variant of UGT2B17 in CNV 4q13.2. Importantly, the association between CNV of UGT2B17 and OF was successfully replicated in an independent Chinese sample containing 399 cases with hip OF and 400 controls. We further examined this CNV's relevance to major risk factors for OF (i.e., hip BMD and femoral-neck bone geometry) in both Chinese (689 subjects) and white (1000 subjects) samples and found consistently significant results (p = 5.0 x 10(-4) -0.021). Because UGT2B17 encodes an enzyme catabolizing steroid hormones, we measured the concentrations of serum testosterone and estradiol for 236 young Chinese males and assessed their UGT2B17 copy number. Subjects without UGT2B17 had significantly higher concentrations of testosterone and estradiol. Our findings suggest the important contribution of CNV of UGT2B17 to the pathogenesis of osteoporosis.
Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.