The fast detection and removal of organic dyes from contaminated water has become an urgent environmental issue due to their high toxicity, chemical stability, and low biodegradability. In this paper, we have developed graphene oxide decorated Fe3O4@SiO2(Fe3O4@SiO2-GO) as a novel adsorbent aiming at the rapid adsorption and trace analysis of organic dyes followed by surface enhanced Raman scattering (SERS). The structure and morphology of the nanocomposites were characterized by transmission electron microscopy (TEM), Fourier infrared spectrometry (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The obtained nanocomposites were used to adsorb methylene blue (MB) in aqueous solution based onπ-πstacking interaction and electrostatic attraction between MB and GO, and the adsorption behaviors of MB were investigated. Moreover, the obtained nanocomposites with adsorbed dyes were separated from the solution and loaded with silver nanoparticles for SERS detection. These nanocomposites showed superior SERS sensitivity and the lowest detectable concentration was 1.0 × 10−7 M.
Ag2Mo3O10 nanorods decorated with Ag2 S nanoparticles have been synthesized by an anion-exchange route. With thiourea as the sulfur source, sulfur ions replace [Mo3O10](2-) units of active sites on the surface of Ag2Mo3O10 nanorods, forming Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles. This induces enhanced absorption in the visible-light region. Ag2 S nanoparticles decorate the surface of Ag2Mo3O10 nanorods uniformly with a suitable amount of thiourea. The Ag2S/Ag2Mo3O10 nanoheterostructure enhances the photocatalytic activity on the degradations of Rhodamine B and glyphosate under visible light. This enhancement is attributed to the improved absorption of visible light and effective separation of charge carriers in the nanoheterostructure. Meanwhile, the Ag2S/Ag2Mo3O10 nanoheterostructure displays good photocatalytic stability based on cyclic photocatalytic experiments.
This paper is concerned with the study of a kind of discrete forcing immersed boundary method (IBM) by which the loosely aero-elasticity coupled method is developed to analyze turbine blade vibration. In order to reduce the spurious oscillations at steep gradients in the compressible viscous flowing field, a five orders weighted essentially nonoscillatory scheme (WENO) is introduced into the flow solver based on large eddy simulation (LES). The three-dimensional (3D) full-annulus domain of the last two stages of an industrial steam axial turbine is adopted to validate the developed method. By the method, the process of grid generation becomes very simple and the unsteady data transferring between stator and rotor is realized without the process of being averaged or weighted. Based on the analysis of some important aerodynamic parameters, it is believed that hypothesis of azimuthal periodicity is not reasonable in this case and full-annulus passages model is more feasible and suitable to the research of turbine blade vibration. Meanwhile, the blade vibration data are also discussed. It is at about 65% of rotor blade height of the last stage that an inflection point is observed and the midspan region of the blade is the vulnerable part damaged potentially by the blade vibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.