Molybdenum disulphide is a novel two-dimensional semiconductor with potential applications in electronic and optoelectronic devices. However, the nature of charge transport in back-gated devices still remains elusive as they show much lower mobility than theoretical calculations and native n-type doping. Here we report a study of transport in few-layer molybdenum disulphide, together with transmission electron microscopy and density functional theory. We provide direct evidence that sulphur vacancies exist in molybdenum disulphide, introducing localized donor states inside the bandgap. Under low carrier densities, the transport exhibits nearest-neighbour hopping at high temperatures and variable-range hopping at low temperatures, which can be well explained under Mott formalism. We suggest that the low-carrier-density transport is dominated by hopping via these localized gap states. Our study reveals the important role of short-range surface defects in tailoring the properties and device applications of molybdenum disulphide.
We report on a strong photoluminescence (PL) enhancement of monolayer MoS2 through defect engineering and oxygen bonding. Micro-PL and Raman images clearly reveal that the PL enhancement occurs at cracks/defects formed during high-temperature annealing. The PL enhancement at crack/defect sites could be as high as thousands of times after considering the laser spot size. The main reasons of such huge PL enhancement include the following: (1) the oxygen chemical adsorption induced heavy p doping and the conversion from trion to exciton; (2) the suppression of nonradiative recombination of excitons at defect sites, which was verified by low-temperature PL measurements. First-principle calculations reveal a strong binding energy of ∼2.395 eV for an oxygen molecule adsorbed on a S vacancy of MoS2. The chemically adsorbed oxygen also provides a much more effective charge transfer (0.997 electrons per O2) compared to physically adsorbed oxygen on an ideal MoS2 surface. We also demonstrate that the defect engineering and oxygen bonding could be easily realized by mild oxygen plasma irradiation. X-ray photoelectron spectroscopy further confirms the formation of Mo-O bonding. Our results provide a new route for modulating the optical properties of two-dimensional semiconductors. The strong and stable PL from defects sites of MoS2 may have promising applications in optoelectronic devices.
The environmental instability of single- or few-layer black phosphorus (BP) has become a major hurdle for BP-based devices. The degradation mechanism remains unclear and finding ways to protect BP from degradation is still highly challenging. Based on ab initio electronic structure calculations and molecular dynamics simulations, a three-step picture on the ambient degradation of BP is provided: generation of superoxide under light, dissociation of the superoxide, and eventual breakdown under the action of water. The well-matched band gap and band-edge positions for the redox potential accelerates the degradation of thinner BP. Furthermore, it was found that the formation of P-O-P bonds can greatly stabilize the BP framework. A possible protection strategy using a fully oxidized BP layer as the native capping is thus proposed. Such a fully oxidization layer can resist corrosion from water and leave the BP underneath intact with simultaneous high hole mobility.
Nanoscale molybdenum disulfide (MoS 2 ) has attracted ever-growing interest as one of the most promising nonprecious catalysts for hydrogen evolution reaction (HER). However, the active sites of pristine MoS 2 are located at the edges, leaving a large area of basal planes useless. Here, we systematically evaluate the capabilities of 16 kinds of structural defects including point defects (PDs) and grain boundaries (GBs) to activate the basal plane of MoS 2 monolayer. Our first-principle calculations show that six types of defects (i.e., V s , V MoS3 , Mo S2 PDs; 4|8a, S bridge, and Mo−Mo bond GBs) can greatly improve the HER performance of the in-plane domains of MoS 2 . More importantly, V s and Mo S2 PDs and S bridge and 4|8a GBs exhibit outstanding activity in both Heyrovsky and Tafel reactions as well. Moreover, the different HER activities of defects are well-understood by an amendatory band-center model, which is applicable to a broad class of systems with localized defect states. Our study provides a comprehensive picture of the defect-engineered HER activities of a MoS 2 monolayer and opens a new window for optimizing the HER activity of twodimensional dichalcogenides for future hydrogen utilization.
Nitrogen (N) is one of the most required mineral elements for plant growth, and potassium (K) plays a vital role in nitrogen metabolism, both elements being widely applied as fertilizers in agricultural production. However, the exact relationship between K and nitrogen use efficiency (NUE) remains unclear. Apple dwarf rootstock seedlings (M9T337) were used to study the impacts of different K levels on plant growth, nitrogen metabolism, and carbon (C) assimilation in water culture experiments for 2 years. The results showed that both deficiency and excess K inhibited the growth and root development of M9T337 seedlings. When the K supply concentration was 0 mM and 12 mM, the biomass of each organ, root-shoot ratio, root activity and NO 3 − ion flow rate decreased significantly, net photosynthetic rate (P n) and photochemical efficiency (F v /F m) being lower. Meanwhile, seedlings treated with 6 mM K + had higher N and C metabolizing enzyme activities and higher nitrate transporter gene expression levels (NRT1.1; NRT2.1). 13 C and 15 N labeling results showed that deficiency and excess K could not only reduce 15 N absorption and 13 C assimilation accumulation of M9T337 seedlings, but also reduced the 15 N distribution ratio in leaves and 13 C distribution ratio in roots. These results suggest that appropriate K supply (6 mM) was optimal as it enhanced photoassimilate transport from leaves to roots and increased NUE by influencing photosynthesis, C and N metabolizing enzyme activities, nitrate assimilation gene activities, and nitrate transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.