With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.
The primary aim pursued by the preparation of the separation membrane is to make the membrane thinner as well as have no defects. The field-flow fractionation deposition is a new molding technology which can overcome the traditional disadvantages, such as multi-preparation, to the preparation of a great area of the separation membrane with no defects. Therefore the main ingredients which influence the appearance and performance of titanium membrane layers are investigated by a scanning electricity mirror (SEM) as well as a porous material testing instrument: powder performance prepared and confected; selection of supporting body; sintering system such as temperature and time. It is shown that the membrane thickness can be controlled at 50μm or so.
The energy adsorption properties of all-metallic corrugated sandwich cylindrical shells (CSCSs) subjected to axial compression loading were investigated by the method combining experiments, finite element simulations and theoretical analysis. CSCS specimens manufactured using two different methods, i.e., high-speed wire-cut electric discharge machining (HSWEDM) and extrusion, were tested under axial compression. While specimens fabricated separately by HSWEDM and extrusion both exhibited a stable crushing behavior, the extruded ones were much more applicable as lightweight energy absorbers because of their good energy absorption capacity, repeatability and low cost. The numerically simulated force-displacement curve and the corresponding deformation morphologies of the CSCS compared well with those obtained from experiments. The specific folding deformation mode was revealed from both experiments and simulations. Subsequently, based upon the mode of folding deformation, a theoretical model was established to predict the mean crushing force of the CSCS construction. It was demonstrated that CSCSs with more corrugated units, smaller value of tc/tf and Hc/Ro could dissipate more impact energy. Such sandwich cylindrical shells exhibited better energy absorption than monolithic cylindrical shells, with an increase of at least 30%. Ultimately, the dynamic effect under the impact load was further evaluated. The dynamic amplification coefficient of CSCS decreased with the increase of the wall thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.