An elliptical wind field model of typhoons is put forward based on the characteristics of the typhoon wind fields occurring in the Yellow Sea and Bohai Sea. By contrasting it with the circular typhoon wind field model, it is found that the elliptical model can adequately represent the real wind field and trace the process of a typhoon storm surge. The numerically simulated results of storm surges by using the elliptical model are in good agreement with the observations and markedly better than those by using the circular model.
Mechanical energy input to the oceans is one of the most important factors controlling the oceanic general circulation. The atmosphere transports mechanical energy to the oceans primarily through wind stress, plus changes of the sea level pressure (the so-called atmospheric loading). The rate of mechanical energy transfer into the ocean due to atmospheric loading is calculated, based on TOPEX/POSEIDON data over ten-year period (1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002). The rate of total energy input for the world oceans is estimated at 0.04TW (1TW=10 12 W), and most of this energy input is concentrated in the Southern Oceans and the Storm Tracks in the Northern Hemisphere.This energy input varied greatly with time, and the amplitude of the interannual variability over the past ten years is about 15%.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.