High-Nuclearity 3d-4f Clusters as Enhanced Magnetic Coolers and MolecularMagnets. -The Co II /Co III (9:1) mixed compounds (III) and the Ni II compounds (V) are isostructural and crystallize in the monoclinic space group P21/m with Z = 2 (single crystal XRD). (IIIa) and (Va) exhibit the largest magnetocaloric effects among any known 3d-4f complexes, which is significant for their potential applications in magnetic cooling technology in the ultralow temperature range. Compounds (IIIb) and (Vb) display slow relaxation of the magnetization.
The hydrolysis of Ln(ClO4)3 in the presence of acetate leads to the assembly of the three largest known lanthanide-exclusive cluster complexes, [Nd104(ClO4)6(CH3COO)60(μ3-OH)168(μ4-O)30(H2O)112]·(ClO4)18·(CH3CH2OH)8·xH2O (1, x ≈ 158) and [Ln104(ClO4)6(CH3COO)56(μ3-OH)168(μ4-O)30(H2O)112]·(ClO4)22·(CH3CH2OH)2·xH2O (2, Ln = Nd; 3, Ln = Gd; x ≈ 140). The structure of the common 104-lanthanide core, abbreviated as Ln8@Ln48@Ln24@Ln24, features a four-shell arrangement of the metal atoms contained in an innermost cube (a Platonic solid) and, moving outward, three Archimedean solids: a truncated cuboctahedron, a truncated octahedron, and a rhombicuboctahedron. The magnetic entropy change of ΔS(m) = 46.9 J kg(-1) K(-1) at 2 K for ΔH = 7 T in the case of the Gd104 cluster is the largest among previously known lanthanide-exclusive cluster compounds.
Three heterometallic cluster complexes {Ln(12)Mo(4)} featuring an Ln(12) core of a distorted truncated tetrahedron were synthesized with the assistance of four MoO(4)(2-) anions as ancillary ligands. Magnetic studies of the {Gd(12)Mo(4)} cluster revealed a large magnetocaloric effect due to the presence of the large number of weakly coupled Gd(III) ions.
The thermal properties, crystal structures, dielectric relaxations, and rotational potential energy curves were examined for new rod-like molecules 1 and 2 bearing three aromatic rings connected by two -CONH-linkage groups to clarify the dynamic molecular behavior and phase transition behavior of the molecular assemblies. The molecular structures of 1 and 2 differed in that the central aromatic ring was phenyl (-C 6 H 4 -) in 1 and pyridyl (-C 5 NH 3 -) in 2, which affected the phase transition behavior owing to the permanent dipole moment without the center of inversion in molecule 2. Although the crystal structures of 1 and 2 were isostructural, the melting point of crystal 2 was approximately 43 K lower than that of crystal 1, and a smectic A mesophase was reversibly observed in crystal 2. A broad endothermic thermal anomaly of crystal 2 was observed in the heating process on the differential scanning calorimetry chart because of thermally activated dipole fluctuation, which was consistent with the frequency-and temperature-dependent dielectric relaxations. Double-and single-minimum-type potential energy curves were observed in the rotations of -C 6 H 4 -and -C 5 NH 3 -rings, respectively, from density functional theory calculations. The difference in rotational symmetry affected the crystal lattice energy and appearance of the mesophase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.