Prostate-specific membrane antigen (PSMA) is a prostate cancer target that plays a crucial role in prostate cancer diagnosis and therapy. Herein, a novel dual-targeted imaging probe, [68Ga]Ga-FAPI-PSMA, was prepared by radiolabeling conjugated DOTA-FAPI-PSMA with the short half-life radionuclide gallium-68 (68Ga), which is dedicated to prostate cancer diagnostic imaging. In vitro, [68Ga]Ga-FAPI-PSMA had higher affinity for the PSMA and FAP high-expressing cell lines 22Rv1 and U87 MG with IC50 values of 4.73 and 2.10 nM, respectively, than in the corresponding negative expression cell lines PC3 and A549, and significant differences in cell uptake were also observed. In vivo, [68Ga]Ga-FAPI-PSMA was rapidly cleared from the body, and the estimated radiation dose was relatively low compared with several other FAPI probes. In 22Rv1 and U87 MG tumor xenografts, [68Ga]Ga-FAPI-PSMA rapidly accumulated in tumors after administration, and the best images can be obtained at 1 h postinjection. In conclusion, the dual-targeted probe [68Ga]Ga-FAPI-PSMA was successfully prepared for in vivo prostate cancer PET/CT imaging.
Purpose: PD-1 checkpoint blockade immunotherapy induces long and durable response in patients with advanced melanoma. However, only a subset of patients with melanoma benefit from this approach. The mechanism triggering the innate resistance of anti-PD-1 therapy remains unclear.Experimental Design: Whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) analyses were performed in a training cohort (n ¼ 31) using baseline tumor biopsies of patients with advanced melanoma treated with the anti-PD-1 antibody. Copy-number variations (CNVs) for the genes CDK4, CCND1, and CDKN2A were assayed using a TaqMan copy-number assay in a validation cohort (n ¼ 85). The effect of CDK4/6 inhibitors combined with anti-PD-1 antibody monotherapy was evaluated in PD-1-humanized mouse (C57BL/6-hPD-1) and humanized immune system (HIS) patient-derived xenograft (PDX) models.Results: WES revealed several significant gene copynumber gains in the patients of no clinical benefit cohort, such as 12q14.1 loci, which harbor CDK4. The association between CDK4 gain and innate resistance to anti-PD-1 therapy was validated in 85 patients with melanoma (P < 0.05). RNA-Seq analysis of CDK4-normal cell lines and CDK4-normal tumors showed altered transcriptional output in TNFa signaling via NF-kB, inflammatory response, and IFNg response gene set. In addition, CDK4/6 inhibitor (palbociclib) treatment increased PD-L1 protein levels and enhanced efficacy (P < 0.05) in the C57BL/6-hPD-1 melanoma cell and the HIS PDX model.Conclusions: In summary, we discovered that genetic aberrations in the CDK4 pathway are associated with innate resistance to anti-PD-1 therapy in patients with advanced melanoma. Moreover, our study provides a strong rationale for combining CDK4/6 inhibitors with anti-PD-1 antibody for the treatment of advanced melanomas.
BackgroundConventional chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC) however it increases therapeutic resistance. In contrast, metronomic chemotherapy (MET) is based on frequent drug administration at lower doses, resulting in inhibition of neovascularization and induction of tumor dormancy. This study aims to evaluate the inhibitory effects, adverse events, and potential mechanisms of MET Vinorelbine (NVB) combined with an angiogenesis inhibitor (Endostar).MethodsCirculating endothelial progenitor cells (CEPs), apoptosis rate, expression of CD31, vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1α) were determined using flow cytometry, western blot analysis, immunofluorescence staining and Enzyme-linked immunosorbent assay (ELISA) analysis. And some animals were also observed using micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) to identify changes by comparing SUVmax values. In addition, white blood cell (WBC) counts and H&E-stained sections of liver, lungs, kidney, and heart were performed in order to monitor toxicity assessments.ResultsWe found that treatment with MET NVB + Endo was most effective in inhibiting tumor growth, decreasing expression of CD31, VEGF, HIF-1α, and CEPs, and reducing side effects, inducing apoptosis, such as expression of Bcl-2, Bax and caspase-3. Administration with a maximum tolerated dose of NVB combined with Endostar (MTD NVB + Endo) demonstrated similar anti-tumor effects, including changes in glucose metabolism with micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) imaging, however angiogenesis was not inhibited. Compared with either agent alone, the combination of drugs resulted in better anti-tumor effects.ConclusionThese results indicated that MET NVB combined with Endo significantly enhanced anti-tumor and anti-angiogenic responses without overt toxicity in a xenograft model of human lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.