Summary
Toll-Like Receptor (TLR) signaling is a key component of innate immunity. Aberrant TLR activation leads to immune disorders via dysregulation of cytokine production, such as IL-12/23. Herein we identify and characterize PIKfyve, a lipid kinase, as a critical player in TLR signaling using apilimod as an affinity tool. Apilimod is a potent small molecular inhibitor of IL-12/23 with an unknown target and has been evaluated in clinical trials for patients with Crohn’s disease or rheumatoid arthritis. Using a chemical genetics approach, we show that it binds to PIKfyve and blocks its phosphotransferase activity, leading to selective inhibition of IL-12/23p40. Pharmacological or genetic inactivation of PIKfyve is necessary and sufficient for suppression of IL-12/23p40 expression. Thus, we have uncovered a novel phosphoinositide-mediated regulatory mechanism that controls TLR signaling.
Angiogenesis induced by tumor cells after implantation in the host begins at a very early stage, i.e., when the tumor mass contains roughly 100-300 cells. Identification of chemotactic signals that initiate tumor cell migration toward the existing vasculature may provide valuable targets for preventing tumor progression and/or metastases.
Summary
Candida albicans is a major fungal pathogen of humans, causing both superficial and life‐threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast‐hyphal transition, white‐opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.