It is well established that arsenic (As) has many toxic compounds, and in particular, inorganic As (iAs) has been classified as a type-1 carcinogen. The measuring of As species in rice flour is of great importance since rice is a staple of the diet in many countries and a major contributor to As intake in the Asian diet. In this study, several solvents and techniques for the extraction of As species from rice flour samples prior to their analysis by HPLC-ICP-MS were investigated. The extraction methods were examined for their efficiency in extracting various arsenicals from a rice flour certified reference material, NMIJ-7532a, produced by the National Metrology Institute of Japan. Results show that ultrasound-assisted extraction at 60 °C for 1 h and then heating at 100 °C for 2.5 h in the oven using a thermostable α-amylase aqueous solution was highly effective in liberating the arsenic species. The recoveries of iAs and dimethylarsinic acid (DMA) in NMIJ-7532a were 99.7% ± 1.6% (n = 3) and 98.1% ± 2.3% (n = 3), respectively, in comparison with the certificated values. Thus, the proposed extraction method is a green procedure that does not use any acidic, basic, or organic solvents. Moreover, this extraction method could effectively maintain the integrity of the native arsenic species of As(III), As(V), monomethylarsonate (MMA), DMA, arsenobetaine (AsB) and arsenocholine (AsC). Under the optimum extraction, chromatography and ICP-MS conditions, the limits of detection (LOD) obtained were 0.47 ng g−1, 1.67 ng g−1 and 0.80 ng g−1 for As(III), As(V) and DMA, respectively, while the limits of quantification (LOQ) achieved were 1.51 ng g−1, 5.34 ng g−1 and 2.57 ng g−1 for As(III), As(V) and DMA, respectively. Subsequently, the proposed method was successfully applied to As speciation analysis for several rice flour samples collected from contaminated areas in China.