Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
Mediator recently has emerged as a central player in the direct transduction of signals from transcription factors to the general transcriptional machinery. In the case of nuclear receptors, in vitro studies have shown that the transcriptional coactivator function of the Mediator involves direct ligand-dependent interactions of the MED1 subunit, through its two classical LxxLL motifs, with the receptor AF2 domain. However, despite the strong in vitro evidence, there currently is little information regarding in vivo functions of the LxxLL motifs either in MED1 or in other coactivators. Toward this end, we have generated MED1 LxxLL motif-mutant knockin mice. Interestingly, these mice are both viable and fertile and do not exhibit any apparent gross abnormalities. However, they do exhibit severe defects in pubertal mammary gland development. Consistent with this phenotype, as well as loss of the strong ligand-dependent estrogen receptor (ER)α-Mediator interaction, expression of a number of known ERα-regulated genes was down-regulated in MED1-mutant mammary epithelial cells and could no longer respond to estrogen stimulation. Related, estrogenstimulated mammary duct growth in MED1-mutant mice was also greatly diminished. Finally, additional studies show that MED1 is differentially expressed in different types of mammary epithelial cells and that its LxxLL motifs play a role in mammary luminal epithelial cell differentiation and progenitor/stem cell determination. Our results establish a key nuclear receptor-and cell-specific in vivo role for MED1 LxxLL motifs, through Mediator-ERα interactions, in mammary gland development.MED1/TRAP220 | estrogen receptor | progenitor/stem cell
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.