Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.
BACKGROUND Photodynamic therapy (PDT) for cancer patients has developed into an important new clinical treatment modality in the past 25 years. PDT involves administration of a tumor‐localizing photosensitizer or photosensitizer prodrug (5‐aminolevulinic acid [ALA], a precursor in the heme biosynthetic pathway) and the subsequent activation of the photosensitizer by light. Although several photosensitizers other than ALA‐derived protoporphyrin IX (PpIX) have been used in clinical PDT, ALA‐based PDT has been the most active area of clinical PDT research during the past 5 years. Studies have shown that a higher accumulation of ALA‐derived PpIX in rapidly proliferating cells may provide a biologic rationale for clinical use of ALA‐based PDT and diagnosis. However, no review updating the clinical data has appeared so far. METHODS A review of recently published data on clinical ALA‐based PDT and diagnosis was conducted. RESULTS Several individual studies in which patients with primary nonmelanoma cutaneous tumors received topical ALA‐based PDT have reported promising results, including outstanding cosmetic results. However, the modality with present protocols does not, in general, appear to be superior to conventional therapies with respect to initial complete response rates and long term recurrence rates, particularly in the treatment of nodular skin tumors. Topical ALA‐PDT does have the following advantages over conventional treatments: it is noninvasive; it produces excellent cosmetic results; it is well tolerated by patients; it can be used to treat multiple superficial lesions in short treatment sessions; it can be applied to patients who refuse surgery or have pacemakers and bleeding tendency; it can be used to treat lesions in specific locations, such as the oral mucosa or the genital area; it can be used as a palliative treatment; and it can be applied repeatedly without cumulative toxicity. Topical ALA‐PDT also has potential as a treatment for nonneoplastic skin diseases. Systemic administration of ALA does not seem to be severely toxic, but the advantage of using this approach for PDT of superficial lesions of internal hollow organs is still uncertain. The ALA‐derived porphyrin fluorescence technique would be useful in the diagnosis of superficial lesions of internal hollow organs. CONCLUSIONS Promising results of ALA‐based clinical PDT and diagnosis have been obtained. The modality has advantages over conventional treatments. However, some improvements need to be made, such as optimization of parameters of ALA‐based PDT and diagnosis; increased tumor selectivity of ALA‐derived PpIX; better understanding of light distribution in tissue; improvement of light dosimetry procedure; and development of simpler, cheaper, and more efficient light delivery systems. Cancer 1997; 79:2282‐308. © 1997 American Cancer Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.