Development of hydrogel-based actuators with programmable deformation is an important topic that arouses much attention in fundamental and applied research. Most of these actuators are nonbiodegradable or work under nonphysiological conditions. Herein, a temperature-responsive and biodegradable gelatin methacryloyl (GelMA)−poly(N-isopropylacrylamide) hydrogel (i.e., GN hydrogel) network was explored as the active layer of a bilayer actuator. Small-angle X-ray scattering (SAXS) revealed that the GN hydrogel formed a mesoglobular structure (∼230 Å) upon a thermally induced phase transition. Rheological data supported that the GN hydrogel possessed 3D printability and tunable mechanical properties. A bilayer hydrogel actuator composed of active GN and passive GelMA layers was optimized by varying the layer thickness and compositions to achieve large, reproducible, and anisotropic bending with a curvature of ∼5.5 cm −1 . Different patterns of the active layer were designed for actuation in programmable control. The 3D printed GN hydrogel constructs showed significant volume reduction (∼25−60% depending on construct design) at 37 °C with the resolution enhanced by the thermo-triggered actuation, while they were able to fully reswell at room temperature. A more intricate 3D printed butterfly actuator demonstrated the ability to mimic the wing movement through thermoresponsiveness. Furthermore, myoblasts laden in the GN hydrogel exhibited significant proliferation of ∼376% in 14 days. This study provides a new fabrication approach for developing biomimetic devices, artificial muscles, and soft robotics for biomedical applications.
Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catechol-functionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan alone have not yet been explored. Herein, catechol-grafted chitosan (CC) was synthesized and further concentrated to obtain the self-healing CC hydrogels. The gelation mechanism of CC hydrogels may be attributed to the formation of hydrogen bonding, cation–π interactions, Michael addition, or Schiff base reactions during concentration phases. Rheological studies showed that the CC hydrogel owned self-healing properties in repeated damage–healing cycles. Coherent small-angle X-ray scattering (SAXS) analyses revealed the formation of a mesoscale structure (~9 nm) as the solid content of the hydrogel increased. In situ SAXS combined with rheometry verified the strain-dependent behavior of the CC hydrogel. The CC hydrogel displayed the osmotic-responsive behavior and enhanced adhesive strength (0.38 N/cm2) after immersion in the physiological saline. The CC scaffold prepared by lyophilizing the CC hydrogel revealed a macroporous structure (~200 µm), a high swelling ratio (9656%), good compressibility, and durability. This work provides an insight into the design of using chitosan–catechol alone to produce hydrogels or scaffolds with tunable mechanical properties for further applications in biomedical fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.