Beetle Antennae Search algorithm is a kind of intelligent optimization algorithms, which has the advantages of few parameters and simplicity. However, due to its inherent limitations, BAS has poor performance in complex optimization problems. The existing improvements of BAS are mainly based on the utilization of multiple beetles or combining BAS with other algorithms. The present study improves BAS from its origin and keeps the simplicity of the algorithm. First, an adaptive step size reduction method is used to increase the usability of the algorithm, which is based on an accurate factor and curvilinearly reduces the step size; second, the calculated information of fitness functions during each iteration are fully utilized with a contemporary optimal update strategy to promote the optimization processes; third, the theoretical analysis of the multi-directional sensing method is conducted and utilized to further improve the efficiency of the algorithm. Finally, the proposed Enhanced Beetle Antennae Search algorithm is compared with many other algorithms based on unbiased test functions. The test functions are unbiased when their solution space does not contain simple patterns, which may be used to facilitate the searching processes. As a result, EBAS outperformed BAS with at least 1 orders of magnitude difference. The performance of EBAS was even better than several state-of-the-art swarm-based algorithms, such as Slime Mold Algorithm and Grey Wolf Optimization, with similar running times. In addition, a WSN coverage optimization problem is tested to demonstrate the applicability of EBAS on real-world optimizations.
The traditional imagery task for brain–computer interfaces (BCIs) consists of motor imagery (MI) in which subjects are instructed to imagine moving certain parts of their body. This kind of imagery task is difficult for subjects. In this study, we used a less studied yet more easily performed type of mental imagery—visual imagery (VI)—in which subjects are instructed to visualize a picture in their brain to implement a BCI. In this study, 18 subjects were recruited and instructed to observe one of two visual-cued pictures (one was static, while the other was moving) and then imagine the cued picture in each trial. Simultaneously, electroencephalography (EEG) signals were collected. Hilbert–Huang Transform (HHT), autoregressive (AR) models, and a combination of empirical mode decomposition (EMD) and AR were used to extract features, respectively. A support vector machine (SVM) was used to classify the two kinds of VI tasks. The average, highest, and lowest classification accuracies of HHT were 68.14 ± 3.06%, 78.33%, and 53.3%, respectively. The values of the AR model were 56.29 ± 2.73%, 71.67%, and 30%, respectively. The values obtained by the combination of the EMD and the AR model were 78.40 ± 2.07%, 87%, and 48.33%, respectively. The results indicate that multiple VI tasks were separable based on EEG and that the combination of EMD and an AR model used in VI feature extraction was better than an HHT or AR model alone. Our work may provide ideas for the construction of a new online VI-BCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.