The aim of the present study was to investigate key genes in fibroids based on the multiple affinity propogation-Krzanowski and Lai (mAP-KL) method, which included the maxT multiple hypothesis, Krzanowski and Lai (KL) cluster quality index, affinity propagation (AP) clustering algorithm and mutual information network (MIN) constructed by the context likelihood of relatedness (CLR) algorithm. In order to achieve this goal, mAP-KL was initially implemented to investigate exemplars in fibroid, and the maxT function was employed to rank the genes of training and test sets, and the top 200 genes were obtained for further study. In addition, the KL cluster index was applied to determine the quantity of clusters and the AP clustering algorithm was conducted to identify the clusters and their exemplars. Subsequently, the support vector machine (SVM) model was selected to evaluate the classification performance of mAP-KL. Finally, topological properties (degree, closeness, betweenness and transitivity) of exemplars in MIN constructed according to the CLR algorithm were assessed to investigate key genes in fibroid. The SVM model validated that the classification between normal controls and fibroid patients by mAP-KL had a good performance. A total of 9 clusters and exemplars were identified based on mAP-KL, which were comprised of CALCOCO2, COL4A2, COPS8, SNCG, PA2G4, C17orf70, MARK3, BTNL3 and TBC1D13. By accessing the topological analysis for exemplars in MIN, SNCG and COL4A2 were identified as the two most significant genes of four types of methods, and they were denoted as key genes in the progress of fibroid. In conclusion, two key genes (SNCG and COL4A2) and 9 exemplars were successfully investigated, and these may be potential biomarkers for the detection and treatment of fibroid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.