Iron overload is an important contributor to disease. The liver, the major site of iron storage in the body, is a key organ impacted by iron overload. While several studies have reported perturbations in liver lipids in iron overload, it is not clear, on a global scale, how individual liver lipid ions are altered. Here, we used lipidomics to study the changes in hepatic lipid ions in iron-overloaded mice. Iron overload was induced by daily intraperitoneal injections of 100mg/kg body weight iron dextran for one week. Iron overload was verified by serum markers of iron status, liver iron quantitation, and Perls’ stain. Compared with the control group, the serum of iron-overload mice exhibited low levels of urea nitrogen and high-density lipoprotein (HDL), and high concentrations of total bile acid, low-density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), suggestive of liver injury. Moreover, iron overload disrupted liver morphology, induced reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, caused lipid peroxidation, and led to DNA fragmentation. Iron overload altered the overall composition of lipid ions in the liver, with significant changes in over 100 unique lipid ions. Notably, iron overload selectively increased the overall abundance of glycerolipids and changed the composition of glycerophospholipids and sphingolipids. This study, one of the first to report iron-overload induced lipid alterations on a global lipidomics scale, provides early insight into lipid ions that may be involved in iron overload-induced pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.